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QUANTITATIVE FEEDBACK THEORY (QFT) FOR THE ENGINEER

A Paradigm for the Design of Control Systems
for Uncertain Nonlinear Plants

2nd Edition
PREFACE

Since the publication in 1987 of the 1st edition of this technical
report, great strides have been made in exploiting the full potential
of the Quantitative Feedback Theory (QFT) technique. The catalyst
that has propelled QFT to the level of being a major multiple-input
multiple- output (MIMO) control system design method has been the
development and availability of viable QFT CAD packages. Through the
close collaboration of Professor Isaac M. Horowitz, the developer of
the QFT technique, with Professor C. H. Houpis and his graduate
students during the 1980's and the early part of the '90s, successful
QFT designs involving structured parameter uncertainty have been
completed and published by AFIT MS thesis students. During this
period the first multiple-input single-output (MISO) and MIMO QFT CAD
packages were developed at AFIT. Another major accomplishment was
the successful implementation and flight test of two QFT designed
flight control systems, by Captain S. J. Rasmussen, for the LAMBDA
unmanned research vehicle in 1992 and 1993. Also, Dr. Charles Hall
of North Carolina State University, on April 28, 1995 announced that
four successful flight tests of QFT flight controllers have been
accomplished. Based upon these solid accomplishments, Lockheed
Advanced Development Co. and British Aerospace Ltd have begun
applying the QFT design method.

This second edition brings the material up to the state-of-the-
art level, and, like the first edition, aims to provide students and
practicing engineers a document that presents QFT in a unified and
logical manner. Refinements based upon the class testing of the
first edition, are incorporated. The material in Chapters II through
V and Appendix A is based upon the numerous articles written by
Professor Horowitz and the numerous lectures that he presented at the
Alr Force Institute of Technology.

The Editor would like to express his appreciation for the support and
encouragement of Professor Pachter during the preparation of this
technical report. His wealth of knowledge of the flight control area
has enhanced the value of this revision.

Acknowledgement is made of the support and encouragement, during the
1980's, of Mr. Evard Flinn, Branch Chief, AFWAL/FIGL, and his
colleagues Mr. James Morris and Mr. Duane Rubertus. This support and
encouragement was maintained by Mr. Max Davis, WL/FIG, and Mr. James
Ramage and Mr. Rubertus, WL/FIGS. Further acknowledgement must be
made of the support given by AFOSR/EOARD during these past many
years.
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The specified peak magnitude of the disturbance response for the
MISO system

Arbitrarily large
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The desired lower tracking bounds for the MIMO system

The desired upper tracking bounds for the MIMO system

The desired modified lower tracking bound for the MIMO system:
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aﬁ—aﬁ+1:cu

The desired modified upper tracking bounds for the MIMO system
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bii_bii_tcu

The disturbance, tracking, and otimal bounds on Lm L(jw;) for the
MISO system

Ultra high frequency boundary (UHFB) for analog design

Ultra high frequency boundary (UHFB) for discrete design

The Lm of the desired tracking control ratio for the upper bound of the
MISO system

The Lm of the desired tracking control ratio for the lower bound of the
MISO system

Stability bounds for the discrete design

Bandwidth
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At

ij

D = {D}
F’ F = {fu}
FOM

G G-= {gij}
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h.g.

Y Yi

Vi

Allotted portion of the ij output due to a cross-coupling effect for a
MIMO system

The (upper) value of Lm Ty(jw;) for MISO system

The dB difference between the augmented bounds of By and B, in the
high frequency range for a MISO system

The dB difference between By and B, for a given w; for a MISO
system

The difference between b; amd a;, i.e., At = b; - 3;

The interaction or cross-coupling effect of a MIMO system
MISO and MIMO system external disturbance input

Script cap dee to denote the set of external disturbance inputs for a
MIMO system D = {D}

The prefilter for a MISO system and the ¢X?¢ prefilter matrix for a
MIMO system respectively

Figures of merit (see Reference 15)

The compensator or controller for a MISO system and the £X/{
compensator or controller matrix for a MIMO system, respectively.
For a diagonal matrix G = {g;}

High frequency

High gain

The phase margin angle for the MISO system and for the i Joop of the
MIMO system, respectively

A function only of the elements of a square plant matrix P (or P)
A running index for sampled-data systems where k = 0,1,2, ...
The sampled time

The excess of poles over zeros of a transfer function
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LHP

LTI

MIMO

MISO

M,

m.p.

n.m.p.

NC

The optimal loop transmission function for the MISO system and the
i*® loop of the MIMO system, respectively

Left-half-plane
Linear-time-invariant

Multiple-input multiple-output; more than one tracking and/or external
disturbance inputs and more than one output

Multiple-input single-output; a system having one tracking input, one
or more external disturbance inputs, and a single output

The specified closed-loop frequency domain overshoot constraint for
the MISO system and for the i® loop of a MIMO system, respectively.

This overshoot constraint may be dictated by the phase margin angle
for the specified loop transmission function

Minimum-phase

Nonminimum-phase

Nichols chart

The number of plant transfer functions for a MISO system or plant
matrix for a MIMO system that describes the region of plant parameter
uncertainty where « = 1, 2, ..., J denotes the particular plant case in

the region of plant parameter uncertainty

the symbol for bandwidth frequency of the models for
TRu R TRL »and T = {;}

phase margin frequency for a MISO system and for the i™ loop of a
MIMO system, respectively

Sampling frequency
MISO plant with uncertainty

mx{ MIMO plant matrix where (p;), is the transfer function relating
the i® output to the j® input for plant case ¢
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P! = {@}

P, =PW

L

QFD
Q = {(g}
Q

R, R = {r}
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Chaptér I Introduction

I.1 Quantitative Feedback Theory

QFT has achieved the st:at:us“6 as a very powerful design technique
for the achievement of assigned performance tolerances over specified
ranges of structured plant parameter uncertainties without and with
control effector failures. It is a frequency domain design technique
utilizing the Nichols chart (NC) to achieve a desired robust design over
the specified region of plant parameter uncertainty. This chapter
presents an overview to QFT analog and discrete design techniques for
both multiple-input single-output (MISO)15'19'47 control systems. For an
in-depth presentation of the MISO QFT design technique the reader is
referred to References 15 and 47. QFT CAD packages are readily
available to expedite the design process. The purposes of this
technical report are: (1) to provide a basic understanding of the MIMO
OFT design technique, (2) to provide the minimum amount of mathematics
necessary to achieve this understanding, (3) to discuss the basic design
steps, and (4) to present two practical examples. The 1list of
references is divided into two sections: the first section are listed
the QFT articles referenced in this Technical Report (TR), and the
gecond section is a partial list of other individuals who have published
articles in the QFT area. The reader is encouraged to review the

articles in both sections.
I.1.1 Why Feedback?

For the answer to the question of "Why do you need QFT?" consider
the following system. The plant P of Fig. I.1 responds to the input r(t)
with the output y(t) in the face of disturbances 4,(t) and d,(t). If it
igs desired to achieve a specified system transfer function T(s) I[=
Y(8)/R(g)] then it is necessary to insert a prefilter, whose transfer
function is T(s)/P(s), as shown in Fig. I.2. This compensated system
produces the desired output as long as the plant does not change and
there are no disturbances. This type of system is gsensitive to changes
in the plant (or uncertainty in the plant), and the disturbances are
reflected directly into the output. Thus, it is necessary to feed back

1




the information in the output in order to reduce the output sensitivity
to parameter variation and attentuate the effect of disturbances on the
plant output.

-~
A
D, D,
D, D, i = 4 v y
X Ly —[EpO-{rpO> .
r P P »
Fig. 1 An open-loop system (basic plant). Fig. I.2 A compensated open-loop system.
In designing a feedback control system, it is desired to utilize a
technique that:
a. Addresses all known plant variations up front.
b. Incorporates information on the desired output tolerances.
c. Maintains reasonably low loop gain (reduce the “cost of
feedback").
This last item is important in order to avoid the problems associated
with high loop gains such as sensor noise amplification, saturation, and
high frequency uncertainties.
I.1.2 what Can QFT Do
Assume that the characteristics of a plant, that is to be
controlled over a specified region of operation, vary, that is, a plant
with plant parameter uncertainty. This plant parameter uncertainty may
be described by the Bode plots of Fig. I.3. This figure represents the ;
range of variation of plant magnitude (dB) and phase over a specified
frequency range. The bounds of this variation, for this example, can be
described by six LTI plant transfer functions. By the application of :

QFT, for a MISO control system containing this plant, a single
compensator and a prefilter may be designed to achieve a specified
robust design.
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Fig. I.3 The bode plots of six LTI plants that represent
the range of the plant’s parameter uncertainty.
I.1.3 Benefits of QFT
The benefits of QFT may be summarized as follows:
a. The result is a robust design which is insenstitive to plant
: variation.
b. There is one design for the full envelope (no need to verify
. plants inside templates).

c. Any design limitations are apparent up front.




d. There is less development time for a full envelope design.

e. One can determine what specifications are achievable up early in
the design process.

f. One can redesign for changes in the specifications quickly.

g. The structure of compensator (controller) is determined up

front.

The MISO Analog Control Systeml!®

L}
LY

As is discussed in Chap. III, an m x m feedback control system can
be represented by an equivalent m? MISO feedback control systems shown
in Fig. I.4. Reference 15 and 47 present an in-depth presentation of
the MISO QFT design technique for analog and discrete-time systems,
respectively. Thus, this chapter presents an overview of the QFT
technique for MISO feedback control system. It is assumed that the
reader has the QFT background presented in these references.

Fig. 1.4 m® MISO equivalent of a 3x3 MIMO
feedback control system.
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Fig. I.5 A MISO plant.

I.2.1 MISO Analog Control szstem?s

The overview of the MISO QFT design technique is presented in terms
of the minimum-phase (m.p.) linear time-invariant (LTI) MISO system of
Fig. I.5. The control ratios for tracking (D = 0) and for disturbance
rejection (R = 0) are, respectively,

_ F(8)G(8)P(8) _ F(s)L(s)
Te = 1 +G(8)P(8) 1 + L(s) (r.1)
T, - P(8) _ P(s) (1.2)

1+G6(8)P(8) 1 + L(8)

The design objective is to design the prefilter F(s) and the compensator
G(s) so the specified robust design is achieved for the given region of
plant parameter uncertainty. The design procedure to accomplish this

objective is as follows:

Step 1: Synthesize the desired tracking model.
Step 2: Synthesize the desired disturbance model.
Step 3: Specify the J LTI plant models that define the boundary of

the region of plant structured parameter uncertainty.

Step 4: Obtain plant templates, at specified frequencies, that




pictorial described the region of plant parameter uncertainty

on the NC.
Step 5: Select the nominal plant transfer function Po(s).
Step 6: Determine the stability contour (U-contour) on the NC.

Steps 7-9: Determine the disturbance, tracking, and optimal bounds on
the NC.

Step 10: Synthesize the nominal loop transmission function L_(s) =
G(s)P,(8) that satisfies all the bounds and the stability
contour.

Step 11: Based upon Steps 1 through 10 synthesize the prefilter F(g).

Step 12: Simulate the system in order to obtain the time response

data for each of the J plants.

The following sub-sections illustrate this design procedure.

I.2.2 Synthesize Tracking Models

The tracking thumbprint specifications, based upon satisfying some
or all of the step forcing function figures of merit for underdamped
(Mb, tp, ty, t., K;) and overdamped (tg, t,, K,) responses, respectively,
for a simple-second system, are depicted in Fig. I.6(a). The Bode plots
corresponding to the time responses y(t), [Bq. (I.3)] and y(t), I[Eq.
(I.4)] in Fig. I.6(b) represent the upper bound By and lower bound By,
respectively, of the thumbprint specifications; i.e., an acceptable
response y(t) must lie between these bounds. Note that for the m.p.
plants, only the tolerance on | TR(jmi)l need be satisfied for a
satisfactory design. For nonminimum-phase (n.m.p.) plants, tolerances
on LTp(jw;) must also be specified and satisfied in the design

process .32 1t ig desirable to synthesize the tracking control ratios
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(wz/a) (s + a) (1.3)
8% + 2l 8 + W5

By

_ K
T0 = (& -0, (5 - o)) (8 - 03 (r.4)

corresponding to the upper and lower bounds Tgy and Tgp,, respectively,
so that Oz(jw;) increases as ; increases above the 0 dB crossing
frequency of Tgpy. This characteristic of &g simplifies the process of
synthesgizing a loop transmission L (8) = G(s)P,(8) that requires the
determination of the tracking bounds Bg(jw;) which are obtained based
upon Sg(jw;). The achievement of the desired performance specification
is based upon the frequency bandwidth BW, 0 < © < O, which is
determined by the intersection of the -12 dB line and the By curve in
Fig. I.6(b).

By=LmTg =LmBp,

:(:) i ‘9% Thumbprint  LmT, 1
1.0 / \\\\\' SPeCiﬁgations R LmM,,
o DY ‘ T — = P
09 \\\\\\\\Q\‘\‘\X\\\\\ E D ©

0.1

(a) Thumbprint specifications (b) Bode plots of Ty

Fig. 1.6 Desired response characteristics: (a) Thumbprint specifications,
(b) Bode plot of T;.

I.2.3 Disturbance Model

The simplest disturbance control ratio model specification is
ITD(jm)l = | Y(3u)/D(Fo)l < o, a constant [the maximum magnitude of the
output based upon a unit step disturbance input (D, of Fig.I.1l)]. Thus
the frequency domain disturbance specification is Lm Tp(jeo) < Lm o, over
the desired specified BW. Thus the disturbance specification is
represented by only an upper bound on the NC over the specified BW.




I.2.4 J LTI Plant Models

The simple plant

By(8) = S (1.5)
where K ¢ {1,10} and a ¢ {1,10}, is used to illustrate the MISO QFT
design procedure. The region of plant parameter uncertainty is
illustrated by Fig. I.7. This region of uncertainty may be described by
J LTI plants, where 1 = 1,2, ... J. These plants lie on the boundary of
this region of uncertainty. That is, the boundary points 1, 2, 3, 4, 5,
& 6 are utilized to obtain 6 LTI plant models that adequately define the
region of plant parameter uncertainty.

1.2.5 Plant Templates of P (s), ﬁP(jmiL

With L = GP, Eq. (I.1l) yields

LmTR=LmF—Lm[1f_’L] (I.6)

The change in Tgp due to the uncertainty in P, since F is LTI, is

i} } } L
A(Lm T,) = Lm T, - Lm F Lm[1+L] (1.7)

By the proper design of L = L, and F, this change in Tp is restricted so
that the actual value of Lm Tr always lies between By and B, of Fig. I.6.
The first step in synthesizing an L, is to make NC templates which
characterize the variation of the plant uncertainty (see Fig. I.8), as
described by v = 1,2, ..., J plant transfer functions, for various
values of w; over a specified frequency range. The boundary of the
plant template can be obtained by mapping the boundary of the plant
parameter uncertainty region, Lm P (ju;) vs LPl(jmi), as shown on the
Nichols chart (NC) in Fig. I.8. A curve is drawn through the points 1,
2, 3, 4, 5, and 6 where the shaded area is labeled JP(jl), which can be
represented by plastic a template. Templates for other values of w; are
obtained in a similar manner. A charcteristic of these templates is
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that, starting from a "low value" of o,, the templates widen (angular
width becomes larger) for increasing values of o; then as oj takes on
larger values and approaches infinity they become narrower and
eventually approach a staight line of height V dB [see Eq. (1.9)].
Guidelines for template determination are given in the following
gsections: Sec. VII.2, Sec. VII.3 (E.L.3), and Sec. IX.5.4.

K
(I 3 4
10 V/ Region of
plant
parameter
uncertainty
1 e o —
1| 6 |5
| l >
0 1 5 0

Fig. 1.7 Region of plant uncertainty

Fig. 1.8 The template SP (j1).




I.2.6 Nominal Plant

While any plant case can be chosen it is an accepted practice to
select, whenever possible, a plant whose NC point is always at the lower
left cormer for all frequencies for which the templates are obtained.

I.2.7 U-Contour (Stability bound)

The specifications on system performance in the frequency domain

[see Fig. I.6(b)] identify a minimum damping ratio { for the dominant
roots of the closed-loop system which becomes a bound on the value of

M, =~ M. On the NC this bound on M = M, [see Figs. I.6(b) and I.9]
establishes a region which must not be penetrated by the templates and
the loop transmission function L(jw) for all o. The boundary of this
region is referred to as the universal high-frequency boundary (UHFB) or
stability bound, the U-contour, because this becomes the dominating
constraint on L(jw). Therefore, the top portion, efa, of the M; contour
becomes part of the U-contour. For a large problem class, as ® — «, the
limiting value of the plant transfer function approaches

lim

. K
-0 [P(jw)] = F (1.8)

where A represents the excess of poles over zeros of P(s). The plant
template, for this problem class, approaches a vertical line of length
equal to

[L Fppy - L Byy] = Lin K,,, ~ Im Ky, = V dB (1.9)

If the nominal plant is chosen at K = K,ins then the constraint M, gives
a boundary_which approaches the U-contour abcdefa of Fig. I.9.

10
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Fig. 1.9 U-contour construction.
1.2.8 timal Bounds B_(jo) on L (jo

The determination of the tracking Bp(jo;) and the disturbance
Bp(jw;) bounds are required in order to yield the optimal bounds B, (Jjo;)

on L (Jjuy)-
1.2.8.1 Tracking Bounds
The solution for Bg(jwoy) requires that the condition
(actual) ATg(joy) < Sg(jw;) dB (see Fig. I.6(b)

must be satisfied. Thus it is necessary to determine the resulting
constraint, or bound BR(jmi), on L(jo;). The procedure is to pick a
nominal plant P, (s) and to derive tracking bounds on the NC, at
gspecified values of frequency and by use of templates or a CAD package,
on the resulting nominal transfer function L,(8) = G(s)P (s). That is,
along a phase angle grid iine on the NC move the nominal point on the
template JP(jv;) up or down, without rotating the template, until it is
tangent to two M-contours whose difference in M values is essentially
equal to 5z. When this condition has been achieved the location of the
nominal point on the template becomes a point on the tracking bound
Bp(jv;) on the NC. This procedure is repeated on sufficient angle grid
1ines on the NC to provide sufficient points to draw B;(jvy) and for all
values of frequency for which templates have been obtained.

11




I.2.8.2 Disturbance Bounds

The general procedure for determining disturbance bounds for the

MISO control system of Fig. I.5 is outlined as follows but more details
are given in Reference 15. From Eq. (I.2) the following equation is

obtained:
a
L]
P = __P°__ = _&
> p, W (1.10)
P e
where W = (P_/P) + L,. From Eq. (I.10), setting Lm T, = &, = Lm Op s the
following relationship is obtained:
Lm W = Lm P, - §, (1.11)
For each value of frequency for which the NC templates are obtained the
magnitude of | W(jo;)l is obtained from Eq. (I.11). This magnitude in
conjuction with the equation W(ju;) = [P (jo;)/P(jw;)] are utilized to
obtain a graphical solution for B,(jo;) as shown in Fig. 1.10%°. Note
that in this figure the template is plotted in rectangular or polar
coordinates.
wo)l <
18d®
D
Byjw)
3 Pjw)
Fig. .10 Graphical evaluation of B,(j®)
»
I.2.8.3 Optimal Bounds ’
For the case shown in Fig. I.1l1l B_(jo;) is composed of those :

portions of each respective bound B (juo;) and Bp(jw;) that have the
largest dB values. The synthesized L (jv;) must lie on or just above the
bound B jw;) of Fig. I.1l.
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Fig. I.11 Bounds B, (j,) and loop shaping.
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I.2.9 Synthesizing (or Loop Shaping) L_(s) and F(s)

The shaping of L, (jo) is shown by the dashed curve in Fig. I.11. A
point such as Lm L_(j2) must be on or above B,(j2). Further, in order
to satisfy the specifications, L (jw) cannot violate the U-contour. 1In
this example a reasonable L_(jw) closely follows the U-contour up to o
= 40 rad/sec and must stay below it above v = 40 as shown in Fig I.1ll.
It also must be a Type 1 function (one pole at the origin).
Synthesizing a rational function L_(s) which satisfies the above
specification involves building up the function

w
L, (jo) = L (Fw) =Pa(.7'w)k|:|o[Kka(J'<ﬂ)] (1.12)

where for k = 0, G, = 1,.0°, and K = H‘}Z=0Kk- In order to minimize the

order of the compensator a good starting point for "building up" the
loop transmission function is to initially assume that L y(jw) = P (jo)
as indicated in Eq. (I.12). L, (jo) is built up term-by-term or by a CaAD

loop shaping routine,8

in order (1) that the point L (jo;) lies on or
above the corresponding optimal bound B (jo;) and (2) to stay just
outside the U-contour in the NC of Fig. I.11. The design of a proper
L,(s) guarantees only that the variation in |Th(jmiﬂ is less than or
equal to that allowed, i.e., 6gz(j®;). The purpose of the prefilter F(s)
is to position Lm [T(jw)] within the frequency domain specifications,
i.e., that it always lies between B; and B; [see Fig. I.6(b)] for all J
plants. The method for determining F(s) is discussed in the next
section. Once a satisfactory L (s) is achieved then the compensator is
given by G(s) = L,(s)/P,(8). Note that for this example L (jo) slightly
intersects the U-contour at frequencies above w,. Because of the
inherent overdesign feature of the QFT technique, as a first trial
design, no effort is made to fine tune the synthesis of L (s). If the
simulation results are not satisfactory then a fine tuning of the design
can be made. The available CAD packages simplify and expedite this fine

tuning.

14
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1.2.10 Prefilter Design!®-19-32

Design of a proper L,(s) guarantees only that the variation in
| Tx(jo)l is less than or equal to that allowed, i.e., [Lm Tp(jo)] <
dg(jw). The purpose of the prefilter F(s) is to position
L(Jw)
Lm 7"(jw) = Im ——< ——— I.13)
(Jo) 1+ L{Jw) (

within the frequency domain specifications. A method for determining
the bounds on F(s) is as follows:

Step 1: Place the nominal point of the o; plant template on the
L,(jo;) point on the L, (jw) curve on the NC (see Fig. I.12).

Step 2: Traversing the template, determine the maximum Lm T_ ,, and the

minimum Lm T, values of Eq. (I.13) are obtained from the M-

n
contours.

Step 3: Based upon obtaining sufficient data points within the desired
frequency bandwidth, for various values of 4, and in
conjunction with the data used to obtain Fig. I.6(b) the plots
of Fig. I.13 are obtained.

Step 4: Utilizing Fig. I.13, the straight-line Bode technique and the
condition

Lim
80 F('?) =1 (r.14)

for a step forcing function, an F(s) is synthesized that lies within the
upper and lower plots in Fig. I.13.

I.2.11 Simulation

The "goodness" of the synthesized L, (s) and F(s) is determined by
gsimulating the QFT designed control system for all J plants. MISO QFT
CAD packages, as discussed in Chap. VIII, are available that expedite
this simulation phase of the complete design process.

15
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\ Fig. I.13 Frequency bounds on F (s).

Fig. 1.12 Prefilter determination.

I.3 The MISO Discrete Control System?’

I.3.1 Introduction

The bilinear transformation, z-domain to the w’-domain and vice-
versa, is utilized in order to accomplish the QFT design for both MISO
and MIMO sampled-data (discrete) control system design in the w’-domain.
This transformation enables the use of the MISO QFT analog design
technique to be readily used, with minor exceptions, to perform the QFT
design for the controller G(w’). If the w’domain simulations satisfy
the desired performance specification then by use of the bilinear
transformation the z-domain controller G(z) is obtained. With this z-
domain controller a discrete-time domain simulation is obtained to
verify the goodness of the design. The QFT technique requires the
determination of the minimum sampling frequency (0g)pin bandwidth that
is needed for a satisfactory design.3°""7 The larger the plant
uncertainty and the narrower the system performance tolerances are, the
larger must be the value of (o). ;,.- Although, hencefoth, the prime is

omitted from w’ whenver the symbol w is used it is be interpreted as w’.

16
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Fig. I.14 A MISO sampled-data control system.

I.3.2 The MISO S led-data Control gtem

Figure I.14 represents the MISO discrete control, having plant
uncertainty, that is to be designed by the QFT technique. The equations
that described this system are as follows:

P,(z) = G, P(2) = (1—24)2[1—39] = (l—z-l)l’e (2) - (L.15)

L(z) = G,,P(2)G,(2), PesP—(Ssl. P,(z) = Z[P—gﬂ] =Z[P,] (L16)

For a unit step disturbance: D (s) = E
s

P,(s) = P(s)D(s). P,(2) = Z[P(s)D(s)] = PD(2) (1.17)
_F@)L(2) _ PD(2) 118
B 1+4L(2) =171 (118)
_ [L(2)F(2) PD(z) 7 1
re = [1+L(z) ]R(Z) +[1+L(z)]D(z) (119)

=Yp(2) +Y,(2) = TR(2)R(2) +Yp(2)

T1.3.3 w’-Domain -- The pertinent s-, z-, and w-plane relationships are

as follows:

+ ¥
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2
«? = (ﬂ) <2, -"’7" < 0.297 (1.20)

2
gs=0+Jjo, (a) w=u+jv=(—21-,)[::i} (b) (1.21)
Tw + 2 2 oT ' WT
g=———=_ (a) v=|(=| tan [ — =(—-—)tan(—) (b)

o3 (3) t== (57) = | - e

u = 2tanh(cT/2) (c)

T
w, = 2n/T, 2z =¢€%/0T = |z| 0T (£.23)

I.3.4 Assumptions
The following assumptions are assumed:

a. Minimum-phase (mp) stable plants

b. The analogue desired models, Eqs (I.3) and (I.44), vield the
desired time response characteristics for the discrete-time
system.

c. The sampling time T is small enough so that over the BW,
0 < © < v, Eq. (I.23) is valid permitting the approximation
s =« w and in-turn

To(w) = [T (8)],., (1.24)

Both the upper and lower bound w-domain tracking models are obtained in
this manner. The disturbance specification is the same as for the analog
case.

I.3.5 Nonminimum Phasge L, (w)

It is important to note that in the w domain any practical L(w) is
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nonminimum phase (n.m.p.) containing a zero at 2/T (the sampling zero).
This result is due to the fact that any practical L(z) has an excess of
at least one pole over zeros. Thus, the design technique for a stable
uncertain plant is modified®? to incorporate the all-pass filter (apf)

w-—%% 2 _y
A(w) = > =-alm = - g’ (I.25)
v+ = = +w
T T
as follows: Let the nominal loop transmission be defined as:
L, = - Ly, (W) A(w) = Ly, (w)Aa'(w) (I.26)
From Eq. (I.26) it is seen that
LL (FV) = LL,(Fv) - LA/(FV) (1.27)
where
- (A(FIV) =2 tan‘l—z"-"'-' >0 (I.28)

An analysis of Egs. (I.26) through (I.28) reveals that the bounds

Bé(jvi) on L (jv) become the bounds B, (jv;) on L,,(iv) by shifting, over
the desired BW, Bé(jvi) positively (to the right on the NC) by the angle

LA’ (jvy), as shown in Fig. I.15. The U-contour (Bﬁ) must also be

shifted to the right by the same amount, at the specified frequencies

vy, to obtain the shifted U-contour By(jv;). The contour Bé is shifted

to the right until it reaches the vertical line LILy,,(jvg) = 0°. The
value of vg, which is function of o, and the phase margin angle as shown
in Fig. 1.15,%7 is given by

2tan4{:%£)==180°— Y (r.29)

It should be mentioned that loop shaping or synthesizing L,(w) can be
done directly without the use of an apf.
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Fig. I.15 The shifted bounds on the NC.
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I.3.6 Plant Templates SP(jv;)

The plant templates in the w-domain have the same characteristic as
those for the analog case (see Sec. I.2.5) for the frequency range 0 <
Wy £ 0 /2 as shown in Fig.I.16(a). In the frequency range 0g/2 < ©; <
» the w-domain templates widen once again then eventually approach a

vertical line as shown in Fig. I.16(b).

dB 20 —————
0.5 4B 8o

120
P — I

1
-180* -120° e0®
Phase angle

(a) (b)
Fig. 1.16 w- domain plant templates.

I.3.7 Synthesizing L (w)

The frequency spectrum can be divided into four general regions for
purpose of synthesizing an Ly ,(w) (loop shaping) that will satisfy the
desired system performance specifications for the plant having plant
parameter uncertainty. These four regions are:

Region 1: For the frequency range where Eq. (I.23) is satisfied use
the analog templates; i.e. SP(juw;) = SP(jvy). The w-domain
tracking, disturbance and optimal bounds and the U-contour are
essentially the same as those for the analog system. The templates
are used to obtain these bounds on the NC in the same manner as for
the analog system.

Region 2: For the frequency range Vg, a5 < Vi < Vyo where o; <

0.250,, use the w-domain templates. These templates are used to
obtain all 3 types of bounds, in the same manner as for the analog
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system, in this region and the corresponding Bﬁ(jvi)~contours are

also obtained.

Region 3: For the frequency range Vy € V4 £ Vg, for the specified

value of o,, only the Bﬁ—contours are plotted.

Region 4: For the frequency range Vy > Vg use the w-domain
templates. Since the templates SPe(jvi) broaden out again for v,
> Vg, as shown in Fig.I.16, it is necessary to obtain the more
stringent (stability) bounds B; shown in Fig. I.17. The templates
are used only to determine the stability bounds Bg.

The synthesis (or loop shaping) of L, (w) involves the synthesizing the
following function:

w
Lpo (V) = P (Iv) [] [KGL (V)] (1.30)
k=0

where the nominal plant Peo(w) is the plant from the J plants that has
the smallest dB value and the largest (most negative) phase 1lag
characteristic. The final synthesized L (w) function must be one that
satisfies the following conditiomns:

1. In Regions I and II the point on the NC that represents the dB
value and phase angle of Ly,(jv;) must be such that it lies on or
above the corresponding B,,(jv;) bound (see Fig. I.15).

2. The values of Eq. (I.30) for the frequency range of Region III

must lie to the right or just below the coreespondingné_contour

(see Fig. I.15).

3. The value of Eq. (I.30) for the frequency range of Region IV
must lie below the Bg; contour for negative phase angles on the NC
(see condition 4).
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4. In utilizing the bilinear transformation of Eq. (I.21), the w-
domain transfer functions are all equal order over equal order.

5. The Nyquist stability criterion dictates that the I (jv) plot
is on the "right side" or the "bottom right side" of the By (jv;)-
contours for the frequency range of 0 < v; < Vg. It has been shown

that:36

(2) Ly, (3v) must reach the right-hand bottom of B,(jvg), i.e.,
approximately point K in Fig. I.17, at a value of v < vk, and

(b) LIy (3vg) < 0° in order that there exists a practical Loo
which satisfies the bounds B(jv) and provides the required
stability.

6. For the situation where one or more of the J LTI plants, that
represent the uncertain plant parameter characteristics, represent
unstable plants and one of these unstable plants is selected as the

nominal plant, then the apf to be used in the QFT design must

include all right-hand-plane (rhp) zeros of P,,. This situation is

not discussed. Note: for experienced QFT control system designers
L,(v) can be synthesized without the use of apf. This approach
also is not covered in this chapter. The loop shaping technique of
the MIMO QFT CAD package, discussed in Chap. VIII, does not involve
the use of an apf.

The synthesized L(w,) obtained following the guidelines of this
section, is shown in Fig. I.17.

I.3.8 Prefilter Design

The procedure for synthesizing F(w) is the same as for the analog
case (see Sec. I.2.10) over the frequency range 0 < Vy £ V4. In order
to satisfy condition 4 of Sec. I.3.7, a nondominating zero or zeros
("far—leftf in the w-plane) are inserted so that the final synthesized
F(w) is equal order over equal order.
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I.3.9 w-Domain Simulation

The "goodness" of the synthesized L, (w) [or L, (w)] and F(w) is
determined by first simulating the QFT w-domain designed control system
for all J plants in the w-domain (an "analog" time domain simulation).
See Chap. VIII for MISO QFT CAD packages that expedite this simulation.

I.3.10 =z-Domain

The two tests of the goodness of the w-domain QFT designed system
is a discrete-time domain simulation of the system shown in Fig. I.14.
To accomplisgh this simulation, the w-domain transfer functions G(w) and
F(w) are transformed to the z-domain by use of the bilinear trans-
formation of Eq. (I.21). This transformation is utilized since the
degree of the numerator and denominator polynomials of these functions
are equal and the controller and prefilter do not contain a zero-order-

hold device.

I.3.10.1 Comparison of the Controller’s w- and z-Domain Bode Plots

Depending on the value of the sampling time T, warping may be
sufficient to alter the loop shaping characteristics of the controller
when it is transformed from the w-domain into the z-domain. For the
warping effect to be minimal the Bode plots (magnitude and angle) of the
w- and z-domain controllers must essentially lie on top of one another
within the frequency range 0 < o < [(2/3)(0 /2)]. 1If the warping is

negligible then a discrete-time simulation can proceed. If not, a
smaller value of sampling time needs to be selected.

I.3.10.2 Accuracy

The CAD packages that are available to the designer determines the
degree of accuracy of the calculations and simulations. The smaller the
value of T the greater the degree of accuracy that is required to be
maintained. The accuracy can be enhanced by simulating G(z) and F(z) as
a set of G’s and F’s cascaded transfer functions, respectively; that is
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G(2) = 6,(2)G,(2) ~ G,(2), F(2) = F,(2)F,(2) ~ F(2)  (I.31)

I.3.10.3 Analysis of Characteristic Equation 0 (z)

Depending on the value of T and the plant parameter uncertainty,
the pole-zero configuration in the vicinity of the -1 + j0 point in the
z-plane for one or more of the J LTI plants can result in an unstable
discrete-time response. Thus before proceeding with a discrete-time
domain simulation an analysis of the characteristic equation Q, (z) for
all J LTI plants must be made. If an unstable system exists an analysis
of Q (z) and the corresponding root-locus may reveal that a slight
relocation of one or more controller pole in the vicinity of the -1 + jO
point toward the origin may ensure a stable system for all J plants
without essentially effecting the desired loop shaping characteristic of
G(z).

I.3.10.4 Simulation and CAD Packages

With the "design checks" of Secs. I.3.10.1 through I.3.10.3
satisfied then a discrete-time simulation is performed to verify that
the desired performance specifications have been achieved. In order to
enhance the MISO QFT discrete control system design procedure that is
presented in this chapter the reader is referred to the CAD flow chart
of Chap. VIII.

I.4 Summary

As stated in the introduction, the purpose of this chapter is to
provide the reader, who is famaliar with the MISO QFT analog and
discrete design techniques,ls"47 an overview of the basic MISO design

procedures.
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Chapter II Basics of System Identification

Nomenclature

ARMAX -- Auto Regressive Moving Average with eXogeneous inputs
ARX -- Auto Regressive with eXogeneous inputs
BW -- Bandwidth

EKF -- Extended Kalman Filter

LR -- Linear Regression

LS -- Least Squares

MV -- Minimum Variance

RLS -- Recursive Least Squares

SID -- System Identification

SNR -- Signal to Noise Ratio

II.1 Introduction

Basic problems in System Identification (SID) are elucidated in
this chapter and a viable approach to their solution is presented.
Determining the controlled ‘‘plant’s” (the dynamical system’s)
parameters from its noise corrupted input and output measurements is,
what SID is all about. As such, SID stands out in stark contrast to the

mathematical modeling based approaches to dynamical system elucidation,
so engrained in physics and engineering practice, for SID embraces an
empiricism based route to modeling. Therefore SID is a basic scientific
tool, for it entails a ‘‘black box" approach to modeling, viz., a model
of the dynamical sytem is being matched to the input data and the
measured output of the sytem.

Linear discrete-time SISO control systems are considered and their

transfer function

y(z) = Dbzt +b,z% + -+ bz"

= (Ir.1)
U(z) 1-az?!-2az2-.~-az™"

is identified, viz., the n+m coefficients al,az,...an,bl,...bh are
determined. The corruption of the input (u) and the output (y) by
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measurement noise is a major concern and therefore SID entails a
statistical approach to modeling. Hence, it should come as no surprise
that the methods of statistics have a strong bearing on SID, as

expounded in this chapter.

Roughly speaking, SID is the ‘‘dynamic" counterpart of the
‘'static" Linear Regression (LR) method of statistics, whose broad
fields of application encompass the ‘‘softer", i.e., with less
structure-endowed, disciplines of economics and the social sciences.
Hence, due to its statistical foundations, SID is applicable to a wide
variety of economic, scientific, and engineering problems. However, if
SID would be a straightforward task, the dependence on mathematical
modeling, and indeed, on physics, would be significantly reduced.
Unfortunately, though, the SID ‘‘stepping stone" requires that careful
attention be given to it.

II.2 Classical Route to Identification

The classical route to the identification of a (linear) control
system's parameters entails the estimation of the state of an augmented
and nonlinear dynamical system, and hence, it would appear that system
identification falls into the Extended Kalman Filtering (EKF) area®.
Thus, the system's parameters and the system's state are 3jointly
estimated by the EKF. In Extended Kalman Filtering a linearization
concept is employed. However, when the state estimation error is, or
becomes, large this linearization- based approach loses its validity and
the estimation algorithm fails. In addition, the emphasis in Kalman
Filtering is on recursive algorithms, and, at the same time, the
complete measurement time history is used. While the recursive approach
to estimation is most compatible with using an ever expanding data set,
the latter has the delitirious effect of precluding the estimation of
time-varying parameters, and, in particular, parameters subject to
jumps, as is the case in systems subject to possible failure. Ad-hoc
‘‘forgetting factors", or, the inclusion of parameter drift in the
filter dynamics type of fixes could possibly handle slowly varying
parameters, but would require a lot of tuning to accommodate parameter
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jumps. Moreover, EKFs must be initialized. When no prior information
about the system's state and parameters is available and the filter is
initialized accordingly, it might take a long time for the erroneous
prior information to be ‘‘washed out". 1In conclusion, this identifi-
cation method suffers from the well known deficiencies of Extended
Kalman Filters. Therefore, in the controls community linear regression
based approaches for the identification of the parameters of linear
control systems, where the linear structure of the dynamics is directly
exploited and the system's parameter only (without the system's state)

is estimated, are used.

If either the system under consideration is static, as is the case
in the linear regression paradigm of statistics, or, if dynamical
systems with process noise but with no measurement noise are considered,
then Auto Regressive with eXogeneous inputs (ARX) models are obtained.
Now, the problem of estimating the parameters of an ARX model leads to
a linear regression formulation, whose solution is given by a Least
Squares (LS) estimate. Therefore, the identification of the parameters
of an ARX model is a relatively simple task. These models are
oftentimes discussed in the controls literature. Unfortunately, ARX
models are not very interesting in control work, due to the dynamic
nature of control systems and the ubiquity of measurement noise.

II.3 Linear Regression

Linear regression based system identification algorithms applied to
the identification of discrete-time dynamical systems with measurement
noise yield Auto Regressive Moving Average with eXogeneous inputs
(ARMAX) models. Thus, it is important to recognize that notwithstanding
the linear structure of the LR, the identification of an ARMAX model is

a nonlinear filtering problem. The LR like formulation of the equations
that need to be solved in order to identify (determine) the parameter
vector, only serves to mask the inherently nonlinear nature of the
original SID problem. Thus, in ARMAX models measurement (or sensor)
noise is responsible for the introduction of correlation into the
‘‘equation error" of the ensuing ‘‘LR." Correlation causes the LS based
parameter estimates to be ‘‘biased", i.e., the parameter estimates are
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bad. Hence, when ARMAX models are used it is important to recognize the
correlation inherent in the LR's equation error, and it is therefore
required to calculate the Minimum Variance (MV) estimate of the para-
meter, which estimate incorporates the equation error covariance
information. In conclusion, the notorious correlation phenomenon
encountered in the ‘‘Linear" Regression formulation of the problem of
identifying ARMAX models is Jjust an alternative manifestation of the

difficult nature of the nonlinear filtering problem.

II.4 SID Approaches

The elucidation of the basic difficulties of system identification
points to the following avenues of approach, which have been explored
with a varied degree of success. Roughly speaking, a tradeoff between
computational effort and instrumentation hardware has arisen, resulting

in the following two approaches:

1. The identification problem of dynamic systems in the presence
of sensor noise can be transformed into a static estimation
problem, provided that additional variables are being measured.
Hence, this approach is viable, provided that additional sensors
are used. This affords the use of ARX models for the identifi-
cation of dynamic systems with sensor noise. Thus, the inclusion of
additional sensors reduces the computational effort. This approach
is therefore particularly suitable for on - line SID, as required
in adaptive and reconfigurable control. This approach is success-

fully pursued in Refs. 61-63.

2. Treat the ARMAX models associated with dynamic SID. Thus, a
rather careful analysis of the attendant stochastic problem is
required. Parsimonious measurements are used, however the
algorithms developed are iterative and computationally intensive.

In this chapter the second approach is pursued. In Sec. II.5 the
mathematics of Linear Regression are discussed. The results of this
section are applied to the identification of ARX and ARMAX models in
Secs. II.6 and II.7, respectively. When applied to ARMAX models, the
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SID algorithms derived in Sec. II.6 for ARX models give poor estimates.
Hence, in Sec. II.7 a careful derivation of a SID algorithm for ARMAX
models is given, and in Sec. II.8 a mathematically correct (but
physically meaningless) interpretation of a dynamic SID problem
involving the ARX model of Sec. II.6 is presented. In Sec. II.9, the
concepts developed in Secs. II.6 - II.8 are illustrated in the context
of a first-order dynamical system, where the measurements are corrupted
by noise. In Sec. II.10 the broader aspects of SID are discussed in the
light of the insights provided in Secs. II.6 - II.8. The alternative
static approach to (dynamic) SID is briefly discussed in Sec. II.11,
followed by concluding remarks in Sec. II.12.

IIX. Linear Regression (LR)

The simplest estimation problems are static. Static estimation
problems are the object of statistics and are referred to as IR
problems. Thus, consider the static LR problem where the parameter

vector © € R® needs to be estimated by:

Z=HO +V (II.1)

The ‘‘measurement vector" is 2 € RY, and the known redgressor H is an Nxn
matrix. The statistics of the ‘‘equation error", or measurement noise,
Vv € RY are specified: V is a zero-mean Gaussian random vector whose

known covariance matrix is:

R = E(VVF) (II.2)

R is an NxN real, symmetric and positive definite matrix.

The MV parameter estimate is

8,, = (F"R*H)'H'R*Z (II.3)

and the estimation error covariance is given by
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E((6-8)(®8-8)7 =5,
where the nxn real, symmetric and positive definite matrix is given by »

Py = (HFRH) ™1 (II.4)

The following is an important special case: the covariance matrix of the

equation error is a scaled identity matrix, i.e.,

R=rI,

where r is a positive number. In this case, the parameter estimate is

particularly simple, viz.,
8, = (F'H) H'Z (1I.5)
and the estimation error covariance is

P, = r(HE) (II.6)

The estimate, Eq. (II.5), is also referred to as the least squares (LS)

estimate.

The crucial advantage of the LS parameter estimate of Eq. (II.5) is
its independence from the covariance of the equation error, which in
this case is solely determined by the measurement noise intensity r.
Furtheremore, note that in this important special case where the
measurement's error covariance matrix is a scaled identity matrix, the
LS estimate is in fact the MV estimate.

The SID route to parameter estimation is rooted in the statistical
method of LR’ which is basically a batch-type algorithm. Hence, the SID
algorithms déveloped in the sequel are readily adaptable to a ‘‘moving >
window" type of algorithm, and hence, are most adept at estimating
time-varying parameters and parameters subject to jumps. The following
is a useful rule of thumb from statistics: It is ‘‘good" to have a

€

large number of measurements, viz., the batch size N = n’. The batch
data processing approach to SID is strongly recommended in this chapter.
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II.6 Linear Regression for System Identification 1

An n'th order SISO control system is considered. The dynamical

system is:

Vier = @ Vi * @Vieq ¥+ @gVina ¥ Dill ¥ Dol o H TS — k=1,2,-

The measurement is:
Zrsr = Yier b Vi (II.8)

where the measurement noise v,,, is a Gaussian random variable with a
variance of o?. The measurement noise is white, viz., E(wv,) = 0 for

all X # £ (i.e., there is no correlation).

A naive LR approach to SID entails the VZsubstitution" of Eq.
(II.8) into Eq. (II.7), whereupon

Viep = @1V + @Vpq * + @ Viener bluk + bzuk-1 F o+ bmuk-m+1' k=1,2, -

(II.9)
is obtained. Unwittingly, an ARX model has been arrived at.
Concatenating N measurements yields the LR

]
a
.1 Vin W
\'
Yk Y Yi1 = Yienn Uk Uk-r 7 Ugkemn k2
Y2 - Y1 Y = Yik-ne2 Ukn U = Uz 4, +
. . . . . . . b1
Visnl  Vien-1 YViow-2 = Yiew-n Uken-1 Uken-2 7 Uk-men-af |
{ Vk+N—1 3
| bn |
(IX.10)

Next, define
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yk+1 Vk+1
Yk+2
. Vis2
Z = (rr.11) V= (11.12)
| Vi Inxa | View Iz
and
Ye Y1 " Yiner U Ugq 0 Ugpaa
e u + u eee u _
- Y15+1 -?’k yk-.n+2 k 1 'k k.m+2 (II.13)

Yiew-1 Yiaw-2  Yiew-n Ukew-1 Uken-2 = Uk-men Nx (m+n)

The parameter vector is

m J(m+n)x1

Thus, the LR model is Eq. (II.1l) is obtained, where the covariance

of the ‘‘measurement error" is a scaled unity matrix, i.e.,

R = E(VWF) = o2I,

Hence, the Minimum Variance estimate is the Least Squares estimate given

by Eq. (II.5). The estimation error covariance is given by Eq. (II.6).

In the conventional SID literature, a lot of attention is being
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given to the recursive (on the number of recorded measurements N) form
of the above result. One then refers to Recursive Least Squares (RLS)
System Identification. The latter is readily derived using the Bayes
formula. Thus, given the parameter estimate @y and the estimation error
covariance matrix Py which were arrived at after a data record of length
N has been processed, the latest N+1 measurement satisfies the scalar

equation

Viewer = 00 + Vi (II.14)

where the row vector

Bigmemy = (Viewr Yiew-10 ™ ¢ Yien-nerr Ukewr ™ v Uge-monr) (II.15)

The (N+1)'th measurement is integrated into the estimation algorithm as
follows: The N+1 based measurements estimate is

GNﬂ. = ON + K(yk+N+1 - hey) (II.16)

where the Kalman gain is given by

1
K= ——=——Ph7 .
hP;hT + o2 ! (11.17)

and the covariance of the updated estimation is

= - ____1__ T
Py, = Py [hPN.hT " oz]PNh hP, (II.18)

Note that additional measurements help to improve the parameter
estimate, viz., Py, < Py, as expected. At the same time, the parameter
estimate supplied by the RLS algorithm at time N is identical to the
parameter estimate arrived at by applying the batch LR algorithm to the
very same data record (of length N), provided that the recursive
algorithm was initialized at some earlier time N' < N using the estimate
and the estimation error covariance supplied by an- application of the
batch algorithm to an initial data record of length N'. This result
follows from the application of the Matrix Inversion Lemmall.
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Now, RLS or LS - based SID algorithms are widely used in the
controls community to identify the parameters of control systems
[(specified by Egs. (II.7) and (II.8)]. At the same time, their
estimation performance is more often than not deficient, viz., the
parameter estimate is euphemistically referred to as ‘‘biased": RLS or
LS - based SID ‘‘does not work". The root cause for the failure of the
RLS or the LS identification algorithms of Egs. (II.16) through (II.18)
or Egs. (II.5) and (II.6), respectively, is the sloppy ‘‘derivation" of
the LR in Eq. (II.9). Hence, in the next section, a proper analysis is

undertaken.

II.7 Linear Regression for System Identification 2

In this Section the identification of an ARMAX model is dicussed.
Hence, a careful stochastic analysis of the parameter estimation process
is required. 1In this respect, the distinction between the true output
of the control system at time Xk, y,, and the actually recorded
measurement 2z, is crucial. Thus, y, is an internal variable governed by
the dynamics Eg. (II.1) and is not directly accessible to the observer.
The observer records the measurements z,, which are related to the
internal variable y, according to the measurement given by Eq. (II.8).

It is here assumed that the input variable u, is noiseless.

Use the measurement matrix of Eg. (II.8) to backout the internal
variable y,, for & = k-n+1, ..., k+N [see, e.g., Eq. (II.7)]. Thus

yk—nﬂ = Zk-n+1 - Vk—n +1

Yie1 © Zker 7 Vi

Ye = 2 = Vi

(II.19)

Yien = Zxen = View

Next, insert Egq. (II.19) into Eq. (II.7). Furthermore, define the zero

mean Gaussian random variable
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Vp= Vi~ a,Viey = @V ~ - = @Vips where {0 = k+1, .., k+N (II1.20)

+« Hence, the novel LR obtained is:

Zyyy T A2y * @32y * . Y ApZy g t b,u, + buyy + .. + byl * Vias

ol ¢=k,.,k+tN -1

-

(II.21)
The LR, Eq. (II.21), is in appearance similar to the LR of Eq. (I1.9).
However, the entries of the Z and H matrices now consist of the actual
measurements/observables z, and not the unavailable internal variables

Y:
Zk+1
Z = zk+2
. (VII.22a)
Zk"N Nx1
Zr Zgaq v . Zy-n+1 U  Upy = Ugpa

o= Zran Zx . Zy-nt2  Uks Uy = Ugopeo

Zyin-1 Zren-2 7 ZkeN-n Uken-1 Uken-2 Use-me M) e (mxem)

(II.22Db)
Moreover, the ‘‘equation error" in Eq. (II.21) is the zero-mean
Gaussian random variable

ﬁ!+1
(II.23)

<t
i

V!+N

- Now, the calculation of the MV estimate of the parameter associated with
the LR of Eg. (II.21) requires the evaluation of the covariance of the

equation error. Hence, the expectation
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R = E(VV) (II.24)

needs to be calculated. The elements of the real symmetric and positive
(semi)definite R matrix are calculated by invoking Eq. (II.20). Thus,

-

the diagonal elements of the matrix R are all equal, viz., &
a 2
Rys = E(V1) = E((Viey = @yViesy = = = @gVieson) ?) = 7 = 02(1 + kz %) s
=1
«
(II.25)

for all i = 1,...,N. The off diagonal elements of the symmetric
equation error covariance matrix are

n+j-1

J
R; ; = E(VPay) = 02(-a;; + 131 ;i sux) (II.26)

1,

for al1 i = 1,...,N, j = 1,...,N and 1 > j. For example, the 1,2
element of the equation error covariance matrix is
Ri,2 = Rp1 = E(Vi1Viehp) = E((Viyy — @1V = @,Viey = = @pVipia) (Viep = @1Viey —

Ve =~ anvk-n+2))

2(_ .
0%(-a; + aja, + @,a; + ~ + a,,a,)

The off diagonal elements of R no longer vanish. In other words, the

equation error random vector V¥ is not white, e.qg.,

E(V,V,) =0

and there is correlation in ¥. Correlation is responsible for the fact

that the LS and MV estimates are no longer identical because in Eq.
(IT.3) the matrix R is not a scaled identity matrix. Hence the LS
formula Eq. (II.5) no longer yields the MV. That's why the widely used
and easy to calculate LS estimate of Eg. (II.5) is ‘‘biased", viz., is
incorrect. The MV estimate of ® in Eg. (II.3) should be used instead. ~

.-

The calculation of the MV estimate requires the knowledge of R.
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Unfortunately, R is not a priori known and in addition to the expected
dependence on the given sensor's measurement error o, R is also
determined by the (as yet unknown) coefficients of the system's transfer
function denominator. Thus, it is important to realize that [see, e.qg.,
Egs. (II.25) and (II.26)]:

R = 0%R' (©)

This calls for an iterative calculation of the MV estimate. Thus, in

Egqs. (II.25) and (II.26) the prior estimate 8, of the parameter is used

to estimate the covariance matrix R, following which an improved MV

estimate of the paramete él is obtained from Eg. (II.3). Strictly

speaking, the prior estimates of the parameters of the system's dynamics
only, which are encapsulated in the coefficients a,,...,a,, are used.

Thus,
a,

R = o2k | 2 (II.27)

4,

This process is repeated, and the convergence of the obtained parameter

estimate sequence 6, is gauged.

Numerical experimentation shows that when the above process
converges then the so obtained parameter estimate closely approximates

the true parameter.

11.8 Identification of Dynamic Systems with Process Noise Only

In this section the identification of the parameters of a
legitimate ARX model is dicussed. The dynamics are:
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Visr = &3V ¥ @Vpq * 0t @pVipn t biU +

bzuk_l + .+ bmuk + Wk' k = 112, ')

(II.28)

-m+1

The process noise w, is a Gaussian random variable with a variance of o2.
The process noise is white, viz., E(ww;) = 0 for all k # £ (i.e., there
is no correlation). The ‘‘measurement" equation is however

21 = YVie (IX.29)

i.e., no measurement error is incurred. Equation (II.29) allows to
directly replace Y,,i1s--+:Yisn 1in Eg. (II.28) by the respective
observables 2..,i,-.-;2;n- Hence, the LR is:

Z=HO + W (II.30)

where the vector 2 and the Regressor matrix H are given by Eq. (II.22)
in Sec. II.7, or Egs. (II.11) and (II.13) in Sec. II.6. Indeed, the LR
in Eq. (II.30) is very similar to the LR's obtained in Secs. II.6 and
II.7. The main difference is in the equation

error vector, viz.,

woe| Tk (II.31)

The statistics of the vector W are however identical to the statistics
of the vector V in Sec. I1I.6, viz.,

E(WW') = ¢%I, (II.32)

The point is that now, the LR of Eg. (II.30) renders a legitimate
rendition of the dynamical system given by Egs. (II.28) and (II.29), as
opposed to the development in Sec. II.6 where the entries of the
measurement vector 2 and of the regressor matrix H entailed a misrepre-
sentation of the physical reality of the situation as modelled by the
dynamics of Egs. (II.7) and (II.8). Hence, a veritable ARX model has
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now been obtained and the LS solution given by Egs. (II.5) and (II.6),
which was incorrectly ‘‘derived" in Sec. II.6, is indeed valid for the
dynamical system of Egs. (II.28) and (II.29). In conclusion, in ARX
models the LS and MV estimates coincide and hence it is easy to identify

the parameter ©.
II.8.1 Discussion

Unfortunately, the dynamical system of Egs. (II1.28) and (II.29),
while mathematically plausible is, in a SID context, physically
meaningless. This is due to the absence of measurement noise in the
stochastic system used in Sec. II.8. Now, measurement noise is a
physical fact of life whenever an experiment is performed, and certainly
so in SID. Therefore, measurement noise should not be ignored in SID
work where the empirical approach to modelling is taken. The stochastic
model in Sec. II.8 nevertheless represents a mathematically (albeit, not
physically) plausible situation where white Gaussian process noise is
entering as a disturbance into the dynamical system. Now, process noise
does not induce correlation into the equation error, whereas measurement
noise does induce correlation into the measurement error. This is why
the LS's estimate is unbiased, viz., the LS approach is mathematically
correct and SID appears to ‘‘work" in digital computer ‘‘experiments''
involving ARX models where random effects are introduced into the
dynamics in the form of process noise only. But, the LS parameter
estimate is invariably biased in the case where measurement noise is
present, in which case the correlation in the measurement error causes
R not to be a scaled unity matrix, and consequently the LS formula, Eq.
(II.5), no longer yields the MV estimate Egq. (II.3). Hence, ARX
modelling and the ensuing LS parameter estimation formulae should not be
applied to dynamical systems with measurement noise - see, e.g., Egs.
(II.7) and (II.8).

II.9 Example

The concepts presented in the previous sections are illustrated in
the context of the identification of a first-order control system whose

dynamics are:




Ve = @V + by, k=1,2,... (II.33)

hJ

At time k+1 the measurement equation is .

Zpe1 = Virr t Vi (II.34)

sy

The measuremnt noise v,,; is a zero mean Gaussian random variable with
variance o?. The measurement errors v, and Vv, are temporally uncorrelated
for all k # ¢.

The data record for time k, k+1,...,k+N is considered and following

the analysis in Sec. II.7, the LR is obtained as follows:

Zyy, = @z, + bu + V.,

Zyip = @Z,y + bug,, + Vi, (II.35)
Zpow = @Zgay-y *DUgyy + Ty
Let
Zg+1 Zx U Vies1
Z = ZI:+2 , H = ch+1 Ugsy , ‘7 - ‘71f+2 (II.36)
ZkeN Zxsn-1 Uken-1 Vi

and the parameter vector is

a
9 -

b
>
»

The covariance matrix of the ‘‘equation error" is

a3
v

42



Vi
- Viez | | 5 (II.37)
. R=E ) Vier  Vie2 Ve ]
*
Vien
f Hence,
Visz T @Via
R=E . [Vies = @V Viez ~ @V ™ View = aViuy-1
View ~ @Vien-1
E( (Vi —avy) (Vi —avy)) E((Vi—avy) (Vip—avy) )
_ E((Vip=@Via1) (Vi —avi) ) E((Visz=@Viy) (Viez=@Vieun) )
E((Viey~@Viaya) (Vip—avy))  E( (View=@Viap-1) (Viez=@Viar) )
(II.38)

Thus, the equation error covariance is the tridiagonal NxN matrix:

1+ a2 -a 0 0 0 0 0
a 1+a?* -a 0 0 0 0
R=02| o0 —a 1+a® -a 0 - 0 0 (II.39)
0 0 0 0 -a 1+a? -a
| o 0 0 0 0 =-a 1+a?

R is invertible, since for a # 1

2(N+1) _
det [R] = &2— —1
az -1
. and for a # 1
« det [R] =N + 1

Hence, in order to identify the parameters a and b of the above ARMAX
model, and as outlined in Sec. II.7, the following iteration for the

estimation of the control system's parameters is obtained:

-
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~2 a -1
1+8¢ -4 0 0 0o O
Qa1 _ Zx Zga1 Zk+N—1} —éi 1+é‘12: ‘51 0 O X »
51~1 Up Upyy o Ugena 0 0 ' e
0 0 0 0 -&; 1+&3]
-
zZ, U, .
Zrar Upn -1 2k Zra1 7 Zran-1 %
U U o Ugey-
Zrsn-1 Uken-1
2 = 1-1
1+a; -&; 0 © 0 0
z
=~ ~2 - k+1
-a; 1l+a; -a; 0O 0 0
Zk+2
0 0 0 0 1+a; -&;
Zgs+N,
~2
0 0 0 0 -a; 1+a&;j)
(II.40)
Furthermore, the estimation error's covariance matrix is
P = g2P (II.41)
where the 2x2 matrix P’/ is:
>
»
g
’
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1-1

1+52 -& 0 o 0 0
-a 1+82 -a 0 0 0
Zy Zgsy 7 Zpan-1 ~ _ _
( . - u 0 -§ 1+* -& 0° 0 X
S e ) 0 o o0 0 0O
0 0 0 0 -& 1+&%
2k U
Zpe1 Ukn )1
| Zken-1 Uken-1
(II.42)
For example, if two measurements are taken (N = 2), the following

explicit parameter estimation formulae for a first-order ARMAX model are

obtained:

02
p = P’ (II.43
(1 + éz + é‘) (uka+1 - uk*lzk) )

where the elements of the 2x2 P” matrix are:

»

(1 + &2) (U + ufy) + 28Uy,

D1 =

Pz = = (1 + &) (4Zy + Uy Znn) ~ E(WeZpay + Upear Z)
Do = = (1 + 8%) (42 + Uy Zge) ~ 8(WeZpay + Upa Zid)
Pz = (1 + &) (2} + zfa) + 28Z;Zc,

and the parameter estimates are:

1 a2 ad
= [(1 + &% + &) (Zhy ~ U Zi) (WZpaz ~ UgnaZia) *

- 2
(UpZrey = Ugaa Zg)

éMde

28, (1 + 82) (WeZar * Upe1 Zrez) (UiZiear + Uper Zi0) ] (II.448)
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B, = . L1+ &) (2} + 2fa) +2az,2,.,] x

2
(UgZiay = UgerZy)

2
[(1 + a%) (WeZp,y + Wps Zpep) + @(UWZpay + Upey Zpess) ]
[(1 + @) (Wez + Uy Zpeq) — @(WZe, + ZU,,,) ] X

[(1 + @) (2pZp01 + ZparZies) * @(Z3Zp0; + ZE41) ] (II.44D)

The estimation errors o's are:

= - Y (1 + &%) (4§ + ud.y)

UpZier ~ Ugaa 2k
o a 2 2 a

O, = —~ ‘/(1 + 82) (zx + Ziw) + 28z.2,,,

UpZrer 7 Ugna 2y

(II.45)

It is appreciated that the source of difficulty in SID is correlation.
The latter is caused by measurement (sensor) noise, not process noise.
Hence, it is most instruct.ive to reconsider the identification of this
first-order control system in the case where a disturbance, viz.,
process noise, enters the system and there is no measurement noise. As
discussed in Sec. II.8, this yields a legitimate ARX model.

The system dynamics are
yk"’l = ayk + buk + Wk’ k = 1,2,"‘ (II.46)
The process noise is a zero mean Gaussian random variable with variance

o? and the process noise sequence is white, viz., E(ww, = 0 for all k
# 1. The measurement equation is

Zrer = Yier (II.47)
Since y, = 2, and Y;,; = 2.,;, the following holds:
Zyyy = @Zp + bu + wy (II.48)

Hence, according to the development in Sec. II.8, the following LR is
obtained:
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Zrar Z Uy Wy
Zies2 Zkn1 Ugsa a Wies1
R = +
\ > : b
ZxeN Zren-1 Uken-1 Wisn-1
%
| -
| »
Define
Zxa1 Zx Uy Wi
z z u W,
k+2 k+1 k+1 k+1
z = . ’ H = . ’ W = .
Zyen Zren-1 Uken-1 Wien-1
Now
R = E(WWF) = o’I, (II1.49)
viz., the covariance matrix of the equation error is a scaled identity
matrix. Hence, the LS estimate is correct, namely the parameter
estimate is:
a -1
5 = (H'H) 'H'Z
. Zy+1
N 2 N -
B Li1Zkeia D ie1Zpei-aUkei-1| |2k Zker 0 Zien-i| |Zkez
N N 2
Li1Zxei-1Ukeia L1 Ukeia Ue Ugn Ug+n-1
ZgsN,
(IX.50)
N Thus, the explicit formulae for the LS parameter estimates are
Y

N 2 N N N
Do Ukei-183=2Zx0i Bkai-1 Die1Ups i1 Zei-1 D=1 Zps i Uprioa

4 .=
LS N 2 N _2 N 2
Do Ukei1Bi=1Zksi1 ~ (Ei=1uk+i—1zk+i-1)

»
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N 2 N N N
D 3a1Ziei-18 31 Z ks iUpeicy ~ Di=1Upkio1 Zkei-123=1Zkei Zario1

‘BLS =

N 2 N _2 N 2
D1 Ukei-1 831 Zkei-1 ~ (Bia1Upeiog Zgaiog)

(II.51)

No iterations are required.

Moreover, the estimation error covariance is

P = o?(H°H)
N 2 N -1
5 zi=12:1c+.71—1 z.i=1zk+j-1uk+_i-1
=0
N N 2
TiaZ Ui Tk

viz., the o of the estimation error of the system's a and b parameters

is:

N 2
o =0 Y Zi=1Uicei-1

a
N ..2 N 2 N 2
Vz.i=1uk+i—12.i=lzk+i-1 = (B3a1UgaiogZgaioq)

N
Vzi=1zk+i-1

[N 2 N 2 _ N 2
zi=1uk+i—1zi=1zk+i-1 (Ei=1 uk+i-1zk+.i—1)

g, =0

(VII.52)

Finally, it is most instructive to compare the direct LS estimate of
Egs. (II.51) and (II.52), and the MV estimate of Egs. (II.44) and

(II.45).

IT.9.1 Identification Experiment

Simulation experiments validate the above insights and derivation.

The truth model's parameters are:
a = 0.95 and b=1

and the intensity of the measurement noise is determined by o = 0.1.

The input signal is
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u, = sin(0.1 k), k=20,1,,...,9

and the prior information is

gz _ 2:2 (II.53)
or
2: 22 (II.54)
The LS estimate is given by Egs. (II.51) and (II.52), viz.,
170500
and the estimation error sigma's are
2t < 0065 (11.56)

The MV parameter estimate is iteratively determined according to
formulae Eqs.(II.40)-(II.42). The (fast) convergence of the estimates
is graphically illustrated in Figs. II.1 and II.2 for the prior
information of Egs. (II.53) and (II.54), respectively. The
identification results are summarized in Table II.1.

0.8 1.2 0.9425 1.0177 0.9427 1.0173

0.5 1.5 0.9415 1.0200 0.9427 1.0173

Table II.1 Estimation Performance

49




1.2g Parameter estimates vs. time (sigma =0.1)
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Fig. 1.2 iterated Parameter Estimates (a,= 0.5, b,=1.5)

The estimation error sigma's are

g, = 0.042

a

and

and 0, = 0.108

and o, = 0.14
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for the prior information Egs. (II.53) and (II.54), respectively.
~ The experimental results show that

1. The MV estimates are superior to the LS estimates.

A )

2. The calculated confidence level in the MV estimates is

lower than in the LS estimates.

Item 2 suggests that the SID scheme based on MV estimation is less prone
to the notorious ‘‘divergence" of EKF's. Indeed, it is most reasonable
to gauge the estimation performance of a SID algorithm using the
following metric:

& - a]l , 16 -b|

o g,

a

The conclusion can be made, based upon these two items, that the
performance of the SID scheme that is based on MV estimation is superior
to the LS based SID, as is to be expected.

IX.10 \worimes" of System Identification (SID)

Pathological work in SID is performed on two fronts: theory and
experimental, as is discussed in this section.

IY.10.1 Theory

In the SID literature there is a strong emphasis on LS estimation,
in particular, of the recursive variety. While randomness is included

#

in many investigations, this is done by introducing process noise into
the dynamics. Hence, correlation is absent and ARX models are analyzed.
Therefore, the LS parameter estimate will be unbiased, i.e., the LS

L]

estimate is correct and SID is then easy. Unfortunately, the absence of
measurement noise in SID, which inherently is of an empirical and
experimental nature, strongly detracts from the physical motivation of

this line of work.
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It is important to recognize that SID resides in the realm of
nonlinear filtering. This is true even for linear dynamical sytems with
measurement noise. This is in contrast to the state estimation problem
in linear systems, which is a 1linear filtering problemn. Now, the
situation is further obscured by the use of LR models in SID. This
brings about a superficial similarity of the state estimation and SID
problems and causes the distinction between the two paradigms to be
blurred. Wheres LS estimation is correct in the linear problem of state
estimation, the sloppy transposition of the LS method to the nonlinear
problem of SID has disastruous consequences. In SID the MV estimation
method, augmented by iterations, must be used.

It is even more unfortunate that this ‘‘research" can be success-
fully conducted on digital computers. It is too easy to simulate
dynamical systems on digital computers where no measurement error is
incurred. Indeed, in the double precision environment of MATLAB and/or
MATRIX, the Signal to Noise Ratio (SNR) of numerical noise is very high
and is approximately 340 dB. Hence, the digital computer provides a
very clean, almost sterilized and unreal environment, where physically
infeasible experiments that entail no measurement noise, as described in
Sec. I1I.8, can be conducted - for, after all, the digital computer is a
mathematical (or thinking) machine. 1In contrast, in the analogue world,
namely, in physical hardware and in the real world, the best achievable
SNR is approximately 60 dB which is a far cry from the clean environment
of the digital computer. Hence, these theoretical numerical investiga-
tions, which oftentimes are ‘‘validated" by digital simulations, have
little bearing on engineering applications.

It is unfortunate that a lot of emphasis is being put in the
litera- ture on ‘‘numerically stable" algorithms for SID. It is
maintained that this is tantamount to ‘‘barking up the wrong tree".
These comments apply to both static and dynamic models. While it is
true that the regressor matrix needs to be inverted, it is maintained
that relatively unsophisticated numerical matrix inversion algorithns
should suffice for the purpose of SID. Namely, there is no need for
matrix inversion algorithms that can contend with very high regressor
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condition numbers where even the very low level of machine induced
numerical noise can cause problems. To see this point, consider the
static problem of LR of Eq. (II.1). Attention is called to the result
from numerical analysis

A8 AZ
8] <K 7 (II.59)

which relates the norm of the parameter estimation error to the norm of
the equation error (the latter is directly related to the measurement
error intensity o and to the condition number « of the regressor matrix
H. The expression given by Eq. (II.59) provides an estimate of the
parameter accuracy. Due to the relatively low SNR (approximately 60
dB) and therefore high noise levels encountered in the (real) physical
world, the estimation results will become very inaccurate at regressor
condition numbers less than a couple of hundreds. Consequently, one
need not bother with the inversion of ill conditioned regressor matrices
which are difficult to invert because their condition number is in the
10Y, where the conditions are ripe for even the very small numerical

noise (of approximately 0.3x10") to induce large computation errors.

The emphasis and insistence on recursive, as opposed to batch, SID
algorithms is most unfortunate. This is for the following reasons:

1. Recursive estimation requires initialization of the algorithm.
If no prior information is available or the prior information is
jnaccurate, it might contaminate the data driven parameter esti-
mate. Furthermore, it might take a long time for the so caused bad
estimates to ‘‘wash out of the system".

2. 1In SID the temporal extent of the data record must be commen-
surate with the dynamical system's bandwidth in order for the SID
experiment to be conducted under conditions of ‘‘good excitation",
and consequently for the parameter estimate to be reliable. This
mandates that the length of the data window in batch SID algorithms
must be sufficiently long. While the parameter estimate arrived at
the end of a recursive computation using the data in the batch
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algorithm's window is identical with the batch SID algorithm
supplied estimate, the intermediate parameter estimates generated
by a recursive algorithm are obviously based on too short a data

record and are therefore unreliable and useless.

IT.10.2 Experimental

As explained in Sec. II.10.1, process noise is benign compared to
correlation inducing measurement noise. If no correlation is present
the LS estimate is correct. It is therefore deplorable that oftentimes
SID algorithms are proposed and then ‘‘validated" in a totally
noiseless, i.e., in a deterministic environment. Almost every SID
algorithm will work in a deterministic environment (in particular, if
measuremnt noise is absent). This ‘‘research" is made possible by the
sterilized environment of the digital computer with double precision
arithmetic. The exercise of these ‘‘System Identification" algorithms
in an environment where measurement noise has been introduced has a
dramatic effect, and the <consequences for identification are

disastruous.

Furthermore, since in a deterministic environment the only noise
present is numerical noise, and the latter is of a very low intensity,
the required ‘‘identification" interval is very short. This observation
has some consequences as far as robust control is concerned. Indeed,
the current robust control paradigms are deterministic. Since feedback
control is used in robust control, i.e., the sytem's output is being
measured, one could argue that in robust control everything is in place
for indirect adaptive control; in other words, all the data is available
for a quick and accurate identification of the plant's parameters.
Hence, after a very short initial time interval, the plant parameters
will be known and the need for robust control which addresses plant
uncertainty, is obviated. Obviously, the possible presence of
unmodelled input disturbances stands in the way of the proposed
approach, even though these could be easily identified in a

deterministic (with no measurement noise) environment.

In conclusion, ‘‘experiments" with no measurement noise make no
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physical sense, neither in SID, nor in robust and/or adaptive control.
Not only is the nonlinear nature of SID not fully appreciated, but so is
its inverse problem facet. To be concise, under conditions of mediocre
excitation, vastly different plants, when subject to the same input,
could yield output signals which are very close. In other words, the
condition number of the regressor matrix could be relatively large, say
a couple of hundreds. Therefore, the following often used ‘‘experiment"
is flawed and does not help to validate a proposed SID algorithm.

1. Given the input/output pair, invoke the SID algorithm and
identify the plant.

2. Apply the input to the so identified plant and calculate (viz.,
simulate) the output.

3. Verify that the simulated output is indeed close to the output
signal used in the identification process.

Based on this ‘‘experiment" it is claimed that this is proof that the
proposed SID algorithm ‘‘works", viz., it is believed that the
identified parameters must be close to the true parameters. In reality,
this is just a manifestation of an elevated condition number of the
linear operator H, and the identified parameters could be far off the

true parameters.

Unfortunately, naively derived (e.g., LS based) SID algorithms
don't work. To see this, choose a new input signal and use the
identified plant in a simulation in order to obtain a new output signal.
Give the new input-output pair to the proposed SID algorithm. In most
cases a new plant will be identified which, unfortunately, has little in
common with the originally identified plant. Hence, obtaining a small

.output error is no proof that a SId algorithm works.

The following is a correct validation process for the determination
of the effectiveness of a SID algorithm. Thus, as in Sec. II.9.1, the
following controlled experiment should be performed:
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1. Chose a plant. Thus, the true values of the plant's parameters
are known to the experimenter.

2. Chose an input signal and apply it to the known plant. Thus, a
simulation is performed in order to obtain the plant's output
signal.

Remark: At this stage, also process noise may be injected into
the control system.

3. Corrupt the recorded output signal with measurement noise.

4. Give the chosen input signal and the noise corrupted output
signal to the SID algorithm and obtain the identified plant's
parameters.

5. To assess the performance of the proposed SID algorithnm,
compare the identified parameters with the original plant
parameters used in the simulation.

In light of the above recommended validation procedure for SID, it is
sad to see that sometimes the correctness of an identification algorithm
is claimed in the literature based on the realization of a small output
error and the use of ‘‘real" data - where, experimentally obtained data
in fact excludes the availbility of an underlying dynamical model, and
thus absolves the author of the paper from any meaningful evaluation of
the proposed SID algorithm's performance.

IT.11 Sstatic Identification

The approach presented in this section differs from the standard
formulation of the SID problem in the controls literature, in that the
ARMAX model is not used. 1Instead, and as mentioned in Sec. I1.1, a
static approach is opted for, which gives rise to an easy to identify
ARX model. The algorithmic respite is acquired not without a price,
because additional sensors are required.
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Strictly speaking, it is postulated that direct measurements of the
state vector and its derivatives are available. Obviously, these
signals are sampled, but the continuous time dynamical system is not
discretized. This measurements - rich scenario is conductive to the
elimination of correlation and allows the posing of a static estimation
problem - as opposed to the standard ARMAX dynamical model. This then
opens the way to directly and rigorously employing the linear LR
statistical method, which exclusively applies to static models. The
static nature of the LR formulation, in turn, ensures that measurement
(or sensor) noise does not ‘‘bias" the estimate - as is the case in

ARMAX models.

Also in static SID the measurement error covariance matrix R is not
known, for it is @ dependent, and the parameter © has yet to be identi-
fied. However, a careful stochastic analysis of the static SID method
reveals that viz., R is a scaled unity matrix, and hence the MV estimate
of @ can be readily determined using the LS method and is independent of
8. Hence, no iterations are required. Moreover, the measurement error's

-~

intensity o can be empirically estimated. Finally, the estimates § and
o are used in Eq. (II.4) to obtain the parameter estimation error

covariance.

Indeed, the inherently nonlinear SID problem is being transformed
into a linear parameter estimation problem. In addition, the vast body
of statistical methods and knowledge’ can be brought to bear on the
static SID method. Hence, the following insights are arrived at.

Concerning the number of parameters to be identified, the
identification accuracy will increase if the number of parameters to be
identified is decreased. 1Indeed, the net effect of including prior
information in the identification algorithm is equivalent to a reduction
in the number of parameters subject to identification. In this respect,

realize that prior information encompasses the following.

(a) Direct prior information:
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(1) Order of system, e.g., in flight mechanics, and for fixed
wing aircraft’, the order of the ‘‘pitch channel" is four.

(2) In flight control work relationships among the parameters
from, e.g., flight mechanics are advantageously employed.

(b) Indirect prior information:

Knowledge of the system's bandwidth is instrumental in the
selection of the length of the identification interval.

Even at the price of introducing a modelling error, the reduction
in the number of parameters to be identified proves beneficial. For
example, in flight control’, when the small phugoid stability derivatives
are equated to zero, an improvement in the short period stability and
control derivatives estimates is recorded - provided that the duration
of the identification interval is commensurate with the short period
(and not the long duration of the phugoid).

Light is shed on the somewhat nebulous notion of ‘‘excitation."
High amplitude inputs to linear systems enhance the ‘‘excitation" level,
for the SNR is obviously increased. However, ‘‘excitation" has more far
reaching consequences in SID than the above mentioned direct scaling
effect. Excitation is in part determined by the physical length of the
identification time interval and not necessarily by the number of
measurements. While it is true that for a predetermined SNR, increasing
the number of measurements will reduce the calculated estimation error
variance, under poor ‘‘excitation" the latter might in fact impair the
quality of the identified parameter, and bring about ‘‘divergence".
Furthermore, the physical 1length of the identification interval is
determined by the bandwidth (BW) of the recorded signals. ‘'Slow"
signals require a long identification time interval. Indeed, time scale
considerations are important in Dynamical Systems and in System
Identification work. Specifically, in the flight control context

reference is made to:
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BW of short period v.s. phugoid and

BW of a and g variables (a is the angle of attack and q is the
pitch rate) in the respective (normal force) Z and M (moment)

equations.

In conclusion, the static approach to SID is particularly suitable
for on-line work, and has successfully been applied to indirect adaptive
and reconfigurable control. In Refs. 62-64 static SID is applied to a
flight control problem where the challenge of accommodating time varying
plant parameters, and indeed, abrupt changes brought about by a control
surface failure, is met. For a general reference on adaptive control

see, e.g., Reference 4.

I1.12 Summary

Insights into the most fundamental aspects of SID have been
obtained. It is true that in the absence of measurement noise (SNR -
o), the identification of a discrete time system using a digital
computer is an easy task. Almost any identification algorithm will work
in the absence of measurement noise. In practice, however, measurement
noise causes correlation and unaccounted for correlation is responsible
for ‘‘bias" in the estimated parameters. Hence, the all important
correlation problem, which is induced by measurenment noise in dynamical
systems, needs to be directly addressed. This is the main theme of this
chapter. A LR - based MV algorithm with iterations has been developed.

Furthermore, the identification accuracy is determined by the
measurements' SNR, and also by the number of parameters to be
identified, and by the level of ‘‘excitation" of the identification
‘vexperiment". These can be summarized as follows:

e Min time to ID = f(BW, number of parameters, excitation, SNR)

® Quality of estimate = f(Window length = N, SNR)

e Constraints improve estimate and shorten the identification time
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Chapter III Multiple-Input Multiple-Output (MIMO) Plants:

Structured Plant Parameter Uncertainty

ITI.1 Introduction

The gquantitative feedback theory (QFT) synthesis technique for

highly structured uncertain linear-time-invariant (LTI) MIMO plants has

the following features®

1. It is quantitative in nature. The extent of parameter uncer-
tainty is defined a priori and so are the tolerances on the systen
responses to the cross-coupling interaction c¢; and to external

disturbance functions (d,);;.

2. The synthesis problem is converted into a number of single-loop
problems, in which structured parameter uncertainty, external dis-
turbance, and performance tolerances are derived from the original
MIMO problem. The solutions to these single-loop problems are
guaranteed to work for the MIMO plant. It is not necessary to
consider the system characteristic equation. Any technique may be
used for the single-loop design problems -- state space, frequency

response, or even cut and try.

3. The design is tuned to the extent of the uncertainty and the
performance tolerances. The design for a MIMO system, as stated
previously involves the design of an equivalent set of MISO system
feedback loops. The design process for these individual loops is
the same as the design of a MISO system described in Chap. I. 1In
general, an mx{ open-loop MIMO plant can be represented in matrix

notation as

y(t) = Pu(t) (III.1)
where y(t) = m-dimensional plant output vector
u(t) = £-dimensional plant input vector

P = mx{ plant transfer function matrix relating u(t)

to y(t)
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Consider the MIMO plant of Fig III.1 for which P is a member of @ (P €
®), the set of all plant transfer functions relating each input to each
output. When a system has variable parameters, which are known or un-
known, the transfer function matrix of the plant may be represented by
the associated set {p;,, P;s-.-}. This set of transfer function matrices
is contained in ®. The design method requires that the uncertainty in
P be known or is at least bounded. In any MIMO system with m inputs
there are at most m outputs which can be independently controlled®.
Therefore, the same dimensions, £ = m, are used for both the input and
output vectors in the design procedure presented here. If the model
defines an unequal number of inputs and outputs, the first step is to
modify the model so that the dimensions of the input and output are the

same. The system is then defined as being of order mxm.

U, —> —>V,
@ ® F) o ®
® o : L 4 e
® ® ® ®

Fig.Il.1 A MIMO plant.

Horowitz has shown, (see Sec. III.6) by using fixed point theory??

that the MIMO problem for an mxm system can be seperated into m equiva-
lent single-loop MISO systems and m’ prefilter/cross-coupling problens,

17,32

which are each designed as outlined in Chap. I The cross-coupling

is akin to the disturbance D of Fig. I.5.

ITI.2 The MIMO Plant

The P matrix may be formed from either the system state space
matrix representation or from the system linear differential equations.

The state space representation for a LTI MIMO system is:
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Ax(t) + Bu(t) (IIX.2)
cx(t)

x(t)
y(t)

where the A, B and C are constant matrices. The plant transfer function

matrix P is evaluated as

P(s) = C[s1 - A]l'B (III.3)

If the plant model consists of m cdupled linear-time-invariant
differential equations, the general plant model for a MIMO system with

two inputs and two outputs has the form:

a(s)y,(s) + b(s)y,(s) = fu,(s) + gu,(s) (III.4)
c(s)y,(s) + d(s)y,(s) = hu,(s) + iu,(s) :

where a(s) through d(s) are polynomials in s, f through i are constant
coefficents, y;(s) and y,(s) are the outputs, and u;(s) and u,(s) are the

inputs. In matrix notation the system is represented by:

{a(s) b(s)
c(s) d(s)

¥(s) =[f g.] U(S) (III.5)
h 1

This is defined as a 2x2 system. In the general case with m inputs and
m outputs, the system is defined as mxm. Let the matrix premultiplying
the output vector ¥(s) be D(s) and the matrix premultiplying the input
vector U(s) be N. Equation (III.5) may then be written as:

D(s) Y(S) = NU(s) (III.6)

The solution of Eq. (III.6) for the output Y(s), where D must be
nonsingular, yields:

Y(s) = D*(s)NU(s) = P(s)U(s) (I1I.7)

Thus, the mxm plant transfer function matrix P(s) is:
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P(s) =D (s)N (III.8)

This plant matrix P(s) = [p;(s)] is a member of the set ® = {P(s)} of
possible plant matrices which are functions of the structured
uncertainty in the plant parameters. In practice, only finite set of P
matrices are formed, representing the extreme boundaries of the plant
uncertainty under varying conditions. Only LTI systems are considered

in this text.

Example III.1 -- The Kirchoff's Voltage law is applied to the
electrical network of Fig. III.2 to yield the following
differential equations (the "D" operator notation is used):

R, R,

Fig. IIl.2 An electrical network

e, (t) = (R, + R, + LD)1,(t) - (R, + LD) 1,(t) (III1.9)
e, (t) = (R, + LD)1i,(t) + (R, + Ry + R, + LD) i,(t) (I11.10)
or
(R, + R, + Ls)I,(s) - (R, + Ls)I,(s) = E,(s) (Irr.11)
-(R, + Ls)I,(s) + (R, + Ry + R, + Ls)I,(s) = E,(s) (II1.12)

Let




U - u, _ €
u, €,
m Inputs
and
v = Y1) _ 151
Y2 1,
m Outputs

Thus, Egs. (III.11) and (III.12) are of the form:

d;, (8)Y,(s) + d,(s)Y,(s) =n,,(s)U, (s) + n,(s)T,(s) (IZ1I.13)

d,, (5) Y, (8) + d,,(8)Y,(5) = n,, (s)U,(8) + n,,(s)U,(s) , (III1.14)

where, for this example, n;,, = n, = 0. These equations are of the
general form:

d;; (8) Y, (8) + = + dyp(8) Yy (s) = n;(s) U (8) + ~ + n;, (s)U,(s) (III.15)

where i=1,2, - ,m
d;; dp, d; I, Iy, o Iy
d d d n n -1
D= ‘21 .22 ?m (III- 163) N = ‘21 .22 .2m (III- 16b)
dpy Az~ dpm Ny Dy Ty

Thus, Egs. (III.13) and (III.14) can be expressed as follows:

Yl Ul
p |- x|

; : (III.17)
mxam mxm

Ym Um

mx1 mx1i

S )
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Which is of the form of Eq. (III.6).
Eq. (III.7) and where m = 2, the expression for Y is:

For this example, based on

Dy1(8) P, (8)| (U (s) D1 (S) U, (8) + py,(s) U, (s)
Y(s) = =
Do1 (8) Py (8) | |Us(s) D, (8) U (8) + P,y (8) Uy (S)
(III.18)
Suppose that p;;P» = PpPar resulting in
1 Pz (III.19)
|P| = = Dy11Pzz ~ P12P21 = 0 *
21 Paz

Thus, for this example, IPI is singular. Equation (III.18) yields:

(III.20)

Py, (P Uy + PiR) (p21)y
1
Py Py

Equation (III.20) reveals that Y, and Y, are not independent of each
Thus, they can not be controlled independently, i.e., an
Therefore, when P is sinqular the system is

other.
uncontrollable system.
uncontrollable.

From Eg. (III.18) the signal flow graph (SFG) of Fig. III.3(a) is
obtained which represents a plant with structured plant parameter
uncertainty with no cross-coupling effects. Figure III.3(b) is the SFG
of the compensated MIMO closed-loop control system where the compenstor

and prefilter matrices are, respectively:

f11 f12
f21 f22

911 Y12
921 Y22

G(s) = F(s) =




-
-1

Fig. I[.3 The signal flow graph of: (a) Eq. (IL14), and (b) the
compensated MIMO control system.

The control ratio matrix T is:

t
T=[ 1 t“} (III.21)
t21 t22
where t; = yi/r; and the tolerance matrix element is given by

bﬁztﬂgaﬁ.
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III.3 Introduction to MIMO Compensation

Figure III.3(b) has the mxm closed-loop MIMO feedback control
structure of Fig. III.4 in which F, G, P, T are each mxm matrices, and
® = {P} is a set of matrices due to plant uncertainty. There are m’
closed-loop system transfer functions (transmissions) t;(s) relating the
outputs y;(s) to the inputs x(s), i.e., yi(s) = ty(s)r;(s). In a
quantitative problem statment, there are tolerance bounds on each t;(s),
giving m’ sets of acceptable regions 7;(s) which are to be specified in
the design, thus t;(s) € 7;(s) and &(s) = {1;(s)}. The application of QFT
to 2x2 and 3x3 systems has been highly developed and is illustrated in

later sections of this chapter.

. F G Lo | pE”
i O—— -—’——C>*=:—
A
-
A
4

Fig. Il.4 MIMO feedback structure.

From Fig. III.4 the following equations can be written:

y = Px w = Gu u=v-y v =Fr

In these equations P(s) = [p;(s)] is the matrix of plant transfer
functions, G(s) is the matrix of compensator transfer functions and is
often simplified so that it is diagonal, that is, G(s) = diag {g;(s)},
and F(s) = {f;(s)} is the matrix of prefilter transfer functions which
may also be a diagonal matrix. The first two expressions yield:

y = PGu
which is utilized with the remaining two expressions to obtain

y = PG[Vv - y] = PG[Fr - Y]
This equation is rearranged to yield:
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y = [I + PG]'PGFr (III.22)
where the system control ratio relating r to y is:
T=([I+ PG]JPGF (III.23)

To appreciate the difficulty of the design problem, note the very
complex expression for t; given by Eq. (III.24), for the case m = 3 with
a diagonal G matrix. However, the QFT design procedure systematizes and

simplifies the manner of achieving a satisfactory system design.

ty, = ([P11f0:G) + DPip£519, *+ P13f5:95]1 [(1 + Dy @y) (1 + P339y = P33P329,95]
= [Py £11G1 + D2pf519; + Posfi95] [D1,9,(1 + P3395) — P3uP139:95]
+ [P31£1,9y + D3, 651G, + Pa3f3195] [DpaP129295 — (1 + Ppgy) P13931) /
( (1 + p;gy) [(1 + Pyp0,) (1 + Py3g3) ~ PoyPs9295)
= P91 (P19, (1 + D3393) = P3pP139,G5] + P319: [P120239:95

— D139, (1 + pzzgz) 1)

(III.24)
There are m’> = 9 such t;(s) expressions (all have the same denominator),
and there may be considerable uncertainty in the nine plant transfer
functions p;(s). The design objective is a system which behaves as
desired for the entire range of uncertainty. This requires finding nine
f;(s) and three g;(s) such that each t;(s) stays within its acceptable
region 74(s) no matter how the p;(s) may vary. Clearly, this is a very
difficult problem. Even the stability problem alone, ensuring that the
characteristic polynomial ([the denominator of Eg. (III.24)] has no
factors in the RHP for all possible p;(s), is extremely difficult. Most
design approaches treat stability for fixed parameter set, neglecting
uncertainty, and attempting to cope with the plant uncertainty by trying
to design the system to have conservative stability margins. Two highly
developed QFT design techniques, Method 1 and Method 2, exist for the
design of such systems and aré presented in this chapter. In both
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approaches the MIMO system is converted into an egquivalent set of
single-loop systems. Method 1 utilizes the MISO design method of Chap.
I. Method 2, "the improved method," is an outgrowth of Method 1 in
which the designed components of the previously designed loop that is

(are) designed are used in the design of the succeeding loops.

III.4 MIMO Compensation

The basic MIMO compensation structure for a two-by-two MIMO system
is shown in Fig. III.5. The structure for a three-by-three MIMO system
is shown in Fig. III.6. They consist of the uncertain plant matrix P,
the diagonal compensation matrix G, and the prefilter matrix ¥. This
chapter considers only a diagonal G matrix, though a non-diagonal G
matrix allows the designer much more design flexibility.” These

matrices are defined as follows:

910 l eee O f11 f12|..- f1m P11 P12I.oo P1m
0 LN ] 0
o5 ol | [P Pl
G= * L] * F= . L] L ] p= . L] *
0 0... gn fm1fm2... ﬂnm Pmi ﬁn2...ﬁnm
+
—— —)?——»‘ A —— —&- -
+
r(t) F G P y(t)
+
—— ) R T—
+
-1
—~l—
-1
-

Fig.l.5 MIMO control structure (two-by-two system).
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Fig. II.6 MIMO control structure (three-by-three system).

Fig. .8 Three-by-three MIMO signal flow graph.
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The dashes in Eg. (III.25) denote the G, F, and P matrices for a 2x2
system. Substituting these matrices into Eq. (III.23) yields the t;(s)
control ratios relating the i®™ output to the j® input. From these t;(s)
expressions the SFG of Fig. III.7 is obtained. The SFG of Fig. III.8

for a 3x3 system is obtained in a similar manner.

ITII.5 Introduction to MISO Equivalents

From Eg. (III.23) obtain

_ (cof I + PG))TPGF

7 det|T + PG|

For a 3x3 plant and a diagonal G matrix, the denominator of this

equation becomes:

1 +Dp13 P1,92 D139z
det|I + PG| =| P29 1 * DP9 P29
P3:91 P39, 1 * P33T

which is a very "messy" equation for the purpose of analysis and
synthesis in achieving a satisfactory design of the control system. In
analyzing Eq. (III.23), it is noted that if |P(jw)G(jw) | >> I then T =
F and the system becomes insensitive to the parameter variations in P.

II11.5.1 Effective MISO Equivalents®

The objective of this section is to find a suitable mapping that
permits the analysis and synthesis of a MIMO control systenm by a set of
equivalent MISO control systems. This mapping results in m? equivalent
systems, each with two inputs and one output. One input is designated
as a "desired" input and the other as an "unwanted" input (cross-
coupling effects and/or external system disturbances). First, Egq.
(IIT.23) is premultiplied by [I + PG] to obtain

[r + PG]IT = PGF (III.26)




When P is nonsingular, then premultiplying both sides of this equation

by P! yields

[P +@GlT = GF (III.27)
Let
b D& .. Din
p;l sz s P;m
pt=| - . . (III.28)
Dn: Dmz - -+ Dm)

The m? effective plant transfer functions are formed as

* det [P]
Q;; = 1/pij; = —=+— (III.29)
17 7 Adj; ;P
The Q matrix is then formed as
(@, @, ... @] |1/Pi 1/Piz ... 1/Din
Q1 D2 - Dop 1/pys 1/P32 «+. 1/Don
o=|" o I : - (III.30)
(Tn1 9wz v+ Dm|  |1/pg; 1/Dgz -+ 1/Dp

where
P = [pij] , Pt = [p;;] = [l/qij], Q= [gij] = [l/p;_j]
The matrix P! is partitioned to the form

P* = [pyl =[1/q;]l =A+B (III.31)

where A is the diagonal part and B is the balance of P!, thus \; = 1/q;
=p;, b, =0, and b; = 1/qg; = pij‘ for i # j. Next, rewrite Eq. (III.27) using

u

Eq. (III.31) and with G diagonal. This yields [A + G]T = GF - BT which

produces
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T = [A + G] "} [GF - BT] (II1.32)

This is used to define the desired fixed point mapping where each of the
m? matrix elements on the right side of Eqg. (III.32) can be interpreted
as a MISO problem. Proof of the fact that design of the individual MISO
feedback loops will yield a satisfactory MIMO design is based on the

Schauder fixed point theorem.?! This theorem is described by defining
a mapping on § as follows:
Y(T,) = [A + G| [GF - BT,] =T, (I11.33)

where each T is from the acceptable set §. If this mapping has a fixed
point, i.e., T;,T; & & such that Y(T;) = Ty (see Fig. III.9), then a
solution to the robust control problem has been achieved yielding a
solution in the acceptable set §. Recalling that

Enclosure of all acceptable Te3

3
Y(T,)

Fig. lIl.9 Schauder fixed point mapping.

A and G in Eq. (III.32) are both diagonal, the 1,1 element on the right
side of Eq. (III.33) for the 3x3 case, for a unit impulse input, yields
the output

91 ta tu)]
i = g.f,, - [f2r o n (III.34)
1 1+ glqll[ e (qm 3

This corresponds precisely to the first structure in Fig. III.10 and is
the control ratio that relates the ith output to the j®™ input, where
i =3 =14in Eq. (III.34). Similarly each of the nine structures in

3




Fig. III.10 corresponds to one of the elements of ¥Y(T) of Eq. (III.32).
The general transformation result of m? MISO system loops is shown in
Fig. III.11. Figure III.10 shows the four effective MISO loops (in the
boxed area) resulting from a 2x2 system and the nine effective MISO
loops resulting from a 3x3 system.* The control ratio, for unit impulse
inputs, for the mxm system of Fig. III.11l obtained from Eq. (III.33)
have the form '

Yij = Wi (Vi + Ci5) (III.35)
where
wi; = q;/ (1 + gq;y) (III.36)
v = gifj (III.37)
and
c., = -2 | G k=1,2 (III.38
i3 = Tk#il g =1,2, -, m .38)
ik

Equation (III.38) reprents the interaction between the loops.

Fig. .10 Effective MISO loops two-by-two (boxed in loops)
and three-by-three (all 9 loops).
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Fig. .11 Effective MISO loops (in general).

Thus, Eq. (III.35) represents the control ratio of the i®™ MISO loop
where the transfer function w;v; relates the i® output to i®™ "desired"

input r; and the transfer function w;c; relates the i® output to the j%

ii~j

"cross-coupling effect" input c;. The transfer function of Eq. (III.35)
can thus be expressed, with r;(s) = 1 (a_unit impulse function), as

Vi; = Wiz, * Wizdey = Ve, * Yoy (III.39a)
or
i3 = bty * Coy (I1I.39D)
where
tr, =Yz, T WiiVij (III.40a)
Cey = Yoy = WiiCiy (III.40Db)

and where now the upper bound, in the low frequency range is expressed




as

by; = bly + 1 (III.40c)

Thus

T, = by; - bl (III.404)

c.ij

represents the maximum portion of b; allocated towards cross-coupling

effect rejection and bé represents the upper bound for the tracking

portion of t;. For any particular loop there is a cross-coupling effect
input which is function of all the other loop outputs. The object of
the design is to have each loop track its desired input while minimizing

the outputs due to the cross-coupling effects.

In each of the nine structures of Fig. III.10 it is neccessary that
the control ratio y;(s), with r(s) = 1, must be a member of the
accceptable set t; € 83(5) (see Fig. III.9). All the g;(s), f;(s) must be
chosen to ensure that this condition is satisfied, thus constituting
nine MISO design problems. If all of these MISO problems are solved,
there exists a fixed point, and then y;(s) on the left side of Eq.
(ITI.33) may be replaced by a t; and all the elements of T on the right
side by t,;. This means that there exist nine t; and t,;, each in its okay
set, which is a solution to Fig. III.4. If each element is 1:1, then
this solution must be unique. A more formal and detailed treatment is
given in Reference 21. Note that if the plant has transmission zeros in
the right-half-plane (r.h.p.) it only indicates that g; may be n.m.p. or
the det P may have zeros in the r.h.p.

IIX.6 Effective MISO Loops of the MIMO System

There are two design methods for designing MIMO systems. In the
first method each MISO loop in Figs. III.10 and III.11l is treated as an
individual MISO design problem, which is solved using the procedures
explained in Chap. I and References 15 and 47. The f;(s) and g;(s) are

16
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the compensator elements of the F(s) and G(s) matrices decribed

previously.

The cross-coupling effect c;(s) expressed by Eq. (III.38) represents

the interaction between the loops, i.e.,

__ X | by _
Ciz = ~ k;ei[gi , k=1,2, -, m (III.41)

where the numerator b, is the upper response bound, (T, or Tp in Fig.

I.6.), for the respective input/output relationship. These are obtained
from the design specifications.® The first subscript k refers to the
output variable, and the second subscript j refers to the input
variable. Therefore, b, is a function of the response requirements on
the output y, due to the input r;. The lower bound a,; needs defining only

when there is a command input.

IIT.6.1 Example: The 2xX2 plant

For this example a diagonal G matrix is utilized. Using a diagonal
matrix results in restricting the design freedom available to achieve
the desired performance specifications. This is offset by simplifying
the design process. The elements of a diagonal G are denoted with a
single subscript, i.e., g;. The P and P! matrices are, respectively:

_[Pu P (III.42)
Py1 Paa
pa o 1| P2 TPu (III.43)
Al-p;; Piy

where A = p;P»n - PpPn. From Eg. (III.29):




1 1

pro| Bt G (III.44)
1
D1 D2
where
_ A _ -A
gll = 'E—l qlz - D ’
2A2 : (III.45)
q = _:_.I q‘ B —
21 p21 22 p11
Substituting Eg. (III.44) into Eqg. (III.27) yields:
i v o qilz £11 tip g.f;, g,
= (ITI.46)
1 R g, L1 o Dt FL;
D1 °ry)
The responses due to input 1, obtained from Eq. (III.46), are:
t
(_ql_ + gl) tll + —q_ﬂ = glfll
1 . 12 (III.47)
i S (i + g ) E =g f.
q21 q22 2 21 2+21
The responses due input 2, obtained from Eq. (III.46), are:
t
(—ql_ + gl) t12 + ?22' = g1f12
H - 12 (III.48)
12 . (L2 v g)t, =gf
q21 q22 2 22 2+22

These equations are rearranged to a format that readily permits
the synthesis of the g;'s and the f;'s that will result in the MIMO
control system achieving the desired system performance specifications.

Equations (III.47) and (III.48) are manipulated to achieve the following
format:

»
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v

to1
g, £y, - —

For input r,: t,, =—-i—& tae
—_ + gl
d1a
t22
91f1, - .
For input r,: t,, = _J._J t2z
— + g
d11

t
G5 - Efl
- 21
1
— 4
2 %2
t
915 - zif
T T 1
—_— +
w2z %

(III.49)

Multiplying the t, and t,, equations by q; and the t, and t, equations by

d,, in Eq.
ITI.12. Associated with each
corresponding SFG.

equation

t22 r
- L1 f12 +( q ) 11 (]]I 52)»
12 1+L,

12 r
L f22 +( ) q22
= -> 0
2 e (TI.53)

in this

figure is

(III.49), respectively, yields the equations shown in Fig.

its

Fig. IL.12 2x2 MISO structures and their respective tii equations.




Equations (III.50) through (III.53) are of the format of Egs.
(ITII.35) through (III.40). Note:

1. Can automatically obtain t,, and t,, from the expressions for t,, =«
and t,, by interchanging 1 - 2 and 2 - 1 in the equations for t;

and t;;.

»

2. The c; term in these equations represent the cross-coupling
effect from the other loops. These terms are functions of
the other t,;'s and the structured pérameter uncertainty of
the plant.

3. Theorectically, by making |Li(jw)| "large enough," so that

c; = 0 a "decoupled system" is achieved.

In a similar fashion, the t; expressions and their corresponding SFG may

be obtained for any mxm control system.

ITY.6.2 Performance Bounds

Based upon unit impulse inputs, from Eg. (III.39) obtain:

ti5 = tr, * Co, (III.54)

Let

$;; be the actual value of t;;

Ty be the actual value of tryy
t.. be the actual value of t_
1j 15

A 2x2 control system is wused to illustrate the concept of
performance bounds. The "actual value" expression corresponding to the

t,; expression of Egq. (III.50) is .

¢11 =T, t Ten

L4

where the 7, term represents the transmission due to input r; and the -

T, term represents the transmission due to the cross-coupling effects.

c

For LTI system, the linear superposition theorem is utilized in
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the development of the performance bounds.

For all P € ® and t, € 75, and c; = -t,/q;, the output ¢; must
satisfy the performance specifications on t;. Thus, it is necessary to

apriori specify the closed-loop transfer functions t;.

Consider the

specifications on b, and a; on t;, as illustrated in Fig. III.13 [see
Egs. (III.40c) and (III.40d)] for m.p. system. Only magnitudes need be
considered for m.p. system since the magnitude determines the phase.

A

Fig.II.13 Upper and lower tracking bounds.

Thus, in terms of the actual values:

a;; < |l $,, (Fo) | < by, (o)
<

T +
T1 t"n s

T < < 1
lower bound upper bound

(III.S5S)

Since the relative phases of the 7's are not known and not required for
m.p. systems, then to ensure the achievement of the desired performance

specifications Eq. (III.55) is expressed as follows:

a; (jo) < | |5 | - Ivo,| | -- the smallest bound

and

| ., |+ | %o, | s b (jo) -- the largest bound

This represents an overdesign since it is more restrictive.
representation of Egs. (III.56) and (III.57), for w = w;,

(III.S56)

(III.57)

A pictorial

is shown in




Fig. III.14. Note that the 7's in this figure and the remaining
discussion in this section represent only magnitudes. From this figure
the following expression is obtained:

At = A, +2t, =by - ay, (III.58)

In the "low frequency range" the bandwidth (BW) of concern, 0 < w < w,
At is split up based upon the desired performance specifications. As is
discussed later, for the high frequency range only an upper bound is of
concern thus there is no need to be concerned with a "split." 1In Figqg.

III.14, for illustrative purposes only, 7, = 0.02 and A7, = 0.2 at 0 = ;.

Fig. IIL.14 Allocation for tracking and cross-coupling
specifications for {;; responses.

Example IIY.2 -- Consider the bound determinations B, B, and B, on
L, = gd;, for a 2x2 system. Thus, b, , based upon

/ /
a;; = (v, ) < |t | s (t,.)y = by (III.59)

and Fig. III.14, for t,, can be determined in the same manner as for
a MISO system (see Chap. I). Referring to Fig. III.12 and to Eq.
(IITI.50), the bound on the cross-coupling effect, is determined as
follows:

» ¢
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= | Cu1%

Itcnl - 1+ L 11 = 0.05 (III.60)

where for the cross-coupling effect the upper bound for t. is given
by

lt., | = |to,| s b, = b, where i-= j=1

cij

Substituting the expression for c; into Eq. (III.60) and then
manipulating this equation the following constraint on L,(jw;) is

obtained:

€211
Q12

Do Ta
Q2

|11 G -
T, T 0.05

Cy.

=20 (III.61)

|1 + L, 2

where the upper bound b, is inserted for t,. It is necessary to
manipulate this equation in a manner that permits the utilization
of the Nichols Chart (NC). This is accomplished by making the
substitution of L = 1/2 into this equation. Thus,

b o+ L) = ll * > 20 ba1 @1 (III.62)
Ql 01 q12
Inverting this equation yields:
U R N T (IIX.63)
1+40 20| b,,4q,,

which is of the mathematical format that allows the use of the NC
for the graphical determination of the cross-coupling bound b,“.“
Equations (III.61) and (III.62) and Eq. (III.63) are, respectively,
of the following mathematical format: '
|a| = |B] (a)
le] < |[p|  (b)

(IIX.64)

In determining this bound, it is necessary to insert the actual
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plant parameters into these equations. That is, for each of the J
plant models, P, (+ =1, 2, ... , J), insert the corresponding plant
parameters into these equations and determinine the magnitudes 3,
B,, C, and D,. The following magnitudes, for each value of w,, are

used from these J sets of values to determine the cross-coupling

bound:

IAtlmin 2 IBtlmax

lct|max < IDllmin

(III.65)

"High bounds" on the NC require h.g., thus, in order to minimize
the required compensator gain, the optimum choice of the

A< T (III.66)

Iy’ C11

specifications are the ones that result in achieving essentially

the same tracking and cross-coupling bounds, i.e.,

b, =b (III.67)

A recommended method for determining an appropriate set of
constraints (specifications) on Egq. (III.66) is to initially do a
design based on the following assumption:

_ ol
ATIlI bll an

With this design, determine how big 7, is and then, by trial and
error if a CAD package is not available, adjust 7, until the
condition

At =21

I1a €11

is satisfied. The MIMO/QFT CAD discussed in Chap. VIII automates
this procedure. This procedure is illustrated in Fig. III.1S5.
Depending on the starting quantities, by decreasing (increasing)
one quantity and increasing (decreasing) the other quantity expe-

dites achieving the condition of Eq. (III.67). By the procedure
just described, the optimal bound b, is given by Egq. (III.67).

L)
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In a similar manner determine the other bounds required for
the other L,'s, using QFT design Method 1. This may require trial
and error; i.e., in loop shaping L;, based on Egs. (III.40) and

(III.52), it is necessary to obtain the bounds for L, which satisfy

the specifications for both t; and tj,. Once these specifications

are satisfied then proceed to do the looping shaping to determine

o, °

Trial 1 Result

3db ’I' Te T dominates
S(jax)=21db 151db «—ATy

3db T,

Trial 2

~Adb ~ Easler on Te but
harder on ATp but
13db T, still dominates.

6db ATgznow dominates

6 db

Thus iterate ATy and T, values between Trial 2 and
3 until By ™~ B¢ within the range 0 < ®; =<,

Fig. .15 Procedure pictorial representation
to achieve B~ B,

I11.6.3 QFT Design Method 2

The QFT design Method 2, for many problems, may yield a better

control system design. This method is an improvement over Method 1 in
that it utlizes the resulting designed g;'s and f;'s of the first MISO
equivalent loop that is designed in the design of the succeeding loops,

This feature of Method 2 reduces the overdesign in the early part
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of the design process. Method 2 may involve a trade-off in the design
parameters. The final MISO equivalent loop to be designed uses the
exact transfer functions of the previously designed g;'s and £;'s thus

this loop has the least amount of overdesign.?®

The order in which the MISO loops are designed is important. Any
order may be chosen but some orders may produce less overdesign (lower
bandwidth) than others. The general rule in the choice of the design
order of the loops is that the most constrained loop is chosen as the
starting loop. That is, choose the "starting" loop i for which it is
most important to minimize the BW requirements. Some of the factors

involved in determining the BW requirements are:

1. Sensor noise

2. Loop i has severe bending mode problems that other loops do

not have.

3. The "high frequency gain" (h.f.g.) uncertainty of g; may be very
much greater than for the other loop. The h.f.g. uncertainty may
effect the size of the templates.

Professor Horowitz provides the following insight:

(1) Analyze the various g; templates over a reasonable range of
frequencies: almost vertical at low and high (for the analog case)
frequencies. For the discrete case, up to the frequency range in
which the templates first narrow, before widening again for o, >
w,/2 (w, sampling frequency), rather than the final frequency range
(&, > ©,/2) in which the templates approach a vertical line.¥

(2) If the feedback requirements per loop are roughly the same,
which indicates the t; specifications are about the same, and the

t.

Gjr
loop with the smallest g; templates should be the "starting loop."
That is, the loop with the smallest amount of feedback should be

i # j, also roughly similar for the different loops, then the
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chosen as the starting loop. The reason for this choice is that
there is a tendency towards BW propagation as the design proceeds
from the first loop to the final loop that is designed. Thus, the
second loop to be designed should be the one having the second
smallest feedback requirement. Also, see the discussion on page
196.

All of these factors emerge from the transparency of QFT which
helps to reduce the trial and error that is involved in achieving a
satisfactory design. If, in choosing the loop with the most severe BW
limitation causes a deéign problem in the suceeding designed loops, then
try a different starting 1loop selection. This is based on the
knowledge, that in general, the B.W. of the succeeding designed loops
are higher than the BW of the previously designed loops. Further
insight into satisfying the BW requirement is given in Chap. VII.

If Method 2 can not satisfy the BW requirements for all loops then
Method 1 must be used, assuming the diagonal dominance condition (see
Sec. III.7) is satisfied. If Method 1 can not be used then it is

necessary to reevaluate the performance specifications, etc.

I1I.6.4 Summary

For the cross-coupling effect rejections problem, the responses
must be less than some bound, that is:

(yij) ciy < ‘I:cij = bcij

Thus the loop equations become

T3 =2 Wiye, = C159u (III.68)

+ ci 1+ g,q,]

where gqg; = L;. Equation (III.68) is manipulated to yield:

|1 + L,| 2 CulQul (ITII.69)

ti;

Substituting Eq. (III.41) into Eq. (III.69) yields:
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(III.70)

For example, in 3x3 system for the first loop, L,, where i =1, j = 2,
and in the first term k = 2 and in the second term k = 3, Eq. (III.70)
becomes:

b,, . b,,
A AN

T
€12

|9, | (ITI.71)

|l +L1[ 2

Remember to use only the magnitude in the cross-coupling calculations.
This assumes the worst case.

III.7 Constraints on the Plant Matrix?

In order to use the QFT technique the following critical condition
must be satisfied.

Condition 1: P must be nonsingular for any combination of possible plant

parameters, thus P’ exists.

In the high frequency range yh(jw) approches zero as o -+ .

Therefore, Eg. (III.39) can be approximated by
tiy = Yo, (IIX.72)

Thus from Egs. (III.35), (III.36) and (III.41), with impulse input
functions, Eq. (III.72) can be expressed as

C..
Ve, = T%—Zu (III.73)
pi
Consider first the 2x2 plant, i.e., m = 2. Specifying that

b@u|s b;; (the given upper bound in the high frequency range), Egs.
(ITII.41) and (III.73) yield, for i = j = 1:




»

»

(III.74)

For i = 2, j = 1, where it is specified that (y.)x < b,; (the given
cross-coupling upper bound)*, Egs. (III.41) and (III.75) yield:

b,, 2 “Du||_Ga (III.75)
G| |1+ L
Equations (III.74) and (III.75) are rearranged to
1+ 1) > Do) (III.76)
bll q12
11+ 1| > 2un| % (III.77)
by, | @2

Multiplying Egs. (III.76) by Eq. (III.77), where I, = L, = O in the

high frequency range, results in

12 &}_gﬁ (I11.78)
912923
Since
Piy Pz _ . ) TR 2T Q1 G2
= ], pt = [}711] % _ }, Q= [qij] =
P21 Pz P21 P Q1 D22
and
1
diy = —
DPij
then

*Henceforth, the cross-coupling bound notation b% is simplified to b; for

i 7.




Qi1 = — T — Q2 =

P11 P22 pfz P12
(III.79)

1 -A _ 1 _ A

&y = — T — Q2 = — T —

D21 P D22 b1y

Substituting Egs. (III.79) into Eq. (III.78) yields Condition 2.

Condition 2 (2x2 plant): As w = ©

Ipn.pzz I > IP:L:Pn I (a)
or (III.80)

Ipupzzl - 'P12p21| >0 (b)

Since p;; and p,, are elements of the principal diagonal of P, then Eq
(ITI.80) 1is the diagonal dominance condition for the 2x2 plant.
Equation (III.80(a)) must also be satisfied for all frequencies. This
condition is obtained considering only the left column of the MISO loops
for the 2x2 plant of Fig III.10. This condition may also be obtained by
using the right column of the MISO loops in Fig III.10 since the loop
transmissions L; and L, are again involved in the derivation. If Eq.
(ITI.80) is not satisfied then refer to Item 3 on page 127.

Next consider the 3x3 plant, i.e., m = 3. For i = j = 1 (the left
column of Fig. III.10), where L; = L, = L; = O as w - © and where it is
specified that

|ycn| < by, I-Vcn| < by, lyc,1| < by

Egs. (III.41) and (III.73) yield, for i = 1,2,3 respectively,

»
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|qh.[|151 ]
|b11 q:.a gn
1 5 | T2z [ | Pua| , | Paa
by | | | Fas Q23
1 5 | a2 [ | Pua| , [P
by | | | Fae D32

Letting

b b

A = 21 A, = a2

Yoby 2 by

Equations (III.81) through (III.83) become, respectively,

2 |dh,| rAMCS
i N
Ay 2 |@) ‘i + E;Z;
™ A,
A, 2 |a —| + |
2 * [Tl | | D52 D32 |

From Egs. (III.86) and (III.87) and using

Y= qquj] - D2aTss
1ij qqui ;:g (e 78X« 290

the following expressions for A\, and A, are obtained

Qa| , | F22T3s
PO D Q3951
' 11 - ¥,

(III.81)

(III.82)

(II1.83)

(III.84)

(IXII.85)

(III.86)

(III.87)

(III.88)

(III.89)




Q3| , [ F22Tss
P (- (- A= A (IIX.90)
2 11 - ¥,

Substitute Egs. (III.89) and (III.90) into Eq. (III.85) to obtain

|qh.[|€ﬁz . | 22Tss ] +
| Q2| | | Ta| | FaTos
IITI.91
| 9| [ | D] , | F23Tez ]S - v ‘ ’
|Fiaf | [ D] | D21 Tea =
Substituting q, = 1/pis into Eq. (III.91) yields:
Piz IP?. + lPi:sP:::. +
P11 IPzz D22P33
(III.92)
* * * * * *
Pia Pin. + Pz:Paz <k - P':‘apiz
DPii| | | P33 DP22D3; D22Ps3

Multiplying Eq. (III.92) by

Pi1P22P33 = Pizs

yields Condition 3.

Condition 3 (3x3 plant; applies only for QFT design Method 1)

As @w = ©

= = * _8 * _8
> + +
|P123| 2 |Pi2 [ |P21P33| + |P2apa | ] (III.93)

p1s| [ 1P22pai| + [P2upia| | + |Piap2apia|

See Reference 21 for higher order plants. This condition is necessary
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only if Eg. (III.8) is used to generate the plant.

Condition 1 ensures controllability of the plant since the inverse
of P produces the effective transfer functions used in the design. If
the P matrix, resulting from the original ordering of the elements of
the input and output vectors does not satisfy Condition 2, then a
reordering of the input and output vectors may result in satisfying

these conditions.
III.8 Basically Non-Interactin BNIC) Loops

A basically non-interacting (BNIC) loop® is one in which the output
yi(s) due to the input r;j(s) is idealy zero. Plant uncertainty and loop
interaction (cross-coupling) makes the ideal response unachievable.
Thus, the system performance specifications describe a range of
acceptable responses for the commanded output and a maximum tolerable
response for the uncommanded outputs. The uncommanded outputs are

treated as cross-coupling effects (akin to disturbances) .

For an LTI plant, having no parameter uncertainty, it is possible
to essentially achieve zero cross-coupling effects. That is, the output
Yy, = 0 due to c;. This desired result can be achieved by postmultiplying

P by a matrix W to yield:

P, = PW = [p;; ] where p;; =0 for i+ J

resulting in a diagonal P, matrix for P representing the nominal plant
case in the set @®. With plant uncertainty the off-diagonal terms of

P, will not be zero but "very small" in comparison to P, for the non-
nominal plant cases in @. In some design problems it may be necessary
or desired to determine a P, upon which the QFT design is accomplished.
Doing this minimizes the effort required to achieve the desired BW and
minimizes the cross-coupling effects. Since Itﬁ(jw)l < by(jw), i # 3,

for all w, it is clearly best to let




f;, = 0, for i # j. Thus,

- = _Cij9is , .
tij = te, = T+1, for all i+ j

This was done on an AFTI-16 design by Professor I. Horowitz as
shown in Fig. III.16. In general, an upper bound b, 1 # 3j, is
specified in order to achieve the performance specification:

< b,;, for all Pe @

It 17

cijl

A system designed to this specification is called BNIC.

[E-]

Y12

»lo

Yo

>t >t

Fig. Il[.16 Output time response sketches for a 2x 2
plant: a - aileron deflection, q - pitch rate,
e — elevator deflection, and p —roli rate.

III.9 Summary

This chapter describes the mutliple-input multiple-output
closed-loop system and the plant matrix. Guidelines for finding
the P matrix, which relates the input vector to the output vector,

are given.
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The method of representing a MIMO system by an equivalent set
of MISO systems is presented using pl. Two design approaches,
which are discussed in detail in Chaps. IV and V, respectively, are
available in which the equivalent MISO loops are designed according
to the MISO design method outlined in Chap. 18" and Chap. 16Y.
Since the g;'s are the same for all m MISO systems in each row of
FIG. III.11, the compensator must be "good enough" (large enough
gain over the desired BW) to handle the "feedback needs" of the
worst of the m systems for each value of «; within the BW. If it
is possible to find the f;'s and the g;'s which satisfy the
performance specifications for the m? systems then it is guaranteed
that these prefilters and compensators, when used as elements in
the MIMO systems of Fig. III.7 or III.8, satisfy the design
specifications of the original MIMO system. Thus, the mxm MIMO has

been converted into m design problems.

III.10 Problems

PITII.1 The plant matrix and the desired control ratio matrix for

a 2x2 system are:

1 0.2 2 ‘0
p-|5 +1 (s+1)(s +2) p-|5* 2
"1 0.5 0.5s - 0 2
s+1 (s+1)(s+2) s + 2

The one degree of freedom is shown in the figure where I
is the identity matrix and I = F

(a) Determine P?.




PITT.2.

PITII.3.

(b) Determine G that results in achieving the desired T.

(c) Suppose the actual compensator transfer function is: .
4
(0.5 +¢)s
5 + 2 91z
G = where €, > 0, €, > 0
-(0.5 + g,) -
s-0.2 = *

Determine t;;(s) and t,;(s). Do these control ratios yield
stable responses? Hint: Analyze T = [I + P G]'pG,
especially PG.

(d) For this part assume t; (s) = ty(s) = (s - 2)/[(s +
2)(71s + 1)] and t;(s) = t,(s) = O where 7 > 0. Determine
G(s) and compare it with G of part (b).

In 2x2 MIMO system, the system poles due to feedback, are
the zeros of A = det[I + PG]. Assume that G is a
diagonal matrix. Prove that the zeros of interest are
those of

d11922

Al = = (1 +.glq11) 1+ gqu?) - 12921

Hint: show that (A/py) = (A'/qy) -

Let Fig. III.1 represent a 2x2 MIMO plant where the plant
is described by:

Y1 + Ay, t By, + Cy, = B\, + Eyu; + Eyu,

E 4
ou,

Jy, + Ky, + Hy,

-

(a) Determine P.

>

(b) Determine P! directly from P. Suppose P has the form
where A = n;n, - n,n,. By dividing 4 into A you should
obtain the quotient EQs + E,Q and no remainder. This
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\
i, I

2P "n12] d
121 ez} 4pus pt = LP22 1,

d ' A

P =

reveals that for most practical MIMO plants of the above
form if P! is derived from P then the common poles of the
elements of P should not appear as common zeros of the
elements of P.

(c) Utilizing Egq. (III.6) prove that the remainder is
zero.
Hint: P = M'N and U = Ply.




Chapter IV Design Method - The Single-loop (MISO) Equivalents!

IV.1l Introduction

Let 7;(s) be the set of acceptable transfer functions t;(s) =
vi(s) /xr;(s) [output y;(s) in response to the command input r;(s) in Fig.

> 4

III.4). Let the plant inverse matrix P! = [1/q3]1, so the plant set p!
generates sets of ¢; = {qﬁ}. Replace the mxm MIMO problem by m single
loops and m? prefilters (see Fig. III.10 for m = 3). 1In Fig. III.10, P
= [1/gy], and the uncertainty in P generates sets 2= {q;}. The cross-

coupling effect

ta (2
c,, = | =2 4 31 t., €T (IV.1)
11 ( ais s k1 k1

in Fig. III.10 is any member of a set c¢,, generated by the t,, in 7, and
the qik in qik’ k = 2,3.

In general in Fig. III.10,

= — 2 tkj )
L_ij - {Cij}l C_'Lj == k#i('—q_ ’ tkj € tkj (IV.2)
ik
for the set of acceptable t,; transfer functions. For the top row of

MISO loops in Flg. III.10, the MISO design problem is to find L; = giqy
and f;; such that the output is a member of the set 7, for all q;; in ¢y
and for all c¢;; in ¢. Similarly, for the middle MISO loop in the top row
of Fig. II1.10 find L, = g;q; and f;;, so that its output is in 7,, for all »
dy in ¢; and all ¢, in ¢,, etc. Note that L, is the same for all the
MISO structures in the first row of Fig. III.10, etc. In each of these
three structures, the uncertainty problem (due to the sets ¢g;, ¢;) gives
bounds on the level of feedback L, needs, and so the toughest of these
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bounds must be satisfied by I,. That is, for each row there will exist,
assuming a diagonal prefilter matrix F, three cross-coupling bounds and
one tracking bound; thus, the toughest portions of these four bounds are
combined to form the optimal bound to be used in loop shaping L.

If the designer designs these MISO systems to satisfy their above
stated specifications, then it is guaranteed that these same f;, g;
satisfy the MIMO uncertainty problem. It is not necessary to consider
the highly complex system characteristic equation [denominator of Eq.
(III.24)] with its uncertain p; plant parameters. System stability (and
much more than that) for all P in ® is automatically guaranteed. It is
easier to present the important ideas by means of a design example.

IV.2 Design Example

The power of the technique is illustrated by presenting the results
of Reference 32, done as a Master's thesis by a typical graduate student
who like nearly all control graduates, has had no courses dealing with
uncertainty. The plant and uncertainties are

Pi; = iAij * B
s2 + Es + F

A, e [2,4] A, e [-0.5,1.1] A,, € [5,101]
A, e [-0.8,-1.8] all other A;; =0
B,, € [-0.15,1] B, € [-1,-2]
B, € [1,4]
B,, € [1,2] B,, € [5,10] B,; € [-1,4]
B;, € [-1,-2] B,, € [15,25]
B,, € [10,20]

Ee [-0.2,2] Fe [0.5,2]

(IV.3)

Note that p;,, is always nonminium phase (n.m.p.) and p;,; is also n.m.p.
for part of the structured parameter uncertainty range. Also, the plant
is unstable for part of the parameter range. At small w there is no
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diagonal dominance in any row, nor in columns 1,2. Hence, Rosenbrock's
technique® cannot be used even if there was no parameter uncertainty.

Since the MISO plants in Fig. III.10 are q; = [det P]/[Ad]j; P], it
follows that if det ©P(s) has right-half-plane (RHP) zeros, the
equivalent single-loop transmissions are n.m.p. (see Sec. V.10). The
technique can still be used, but success can be guaranteed only if the
performance tolerances are compatible with the n.m.p. character, just as
in the single-loop system (see App. A.2).% ¥ For this design example,
det P(s) has all its zeros in the interior of the left-half-plane (LHP),

so this problem does not arise.

IV.2.1 Performance Tolerances

Performance tolerances are on the magnitudes of the elements of the
3x3 closed loop system transmission matrix T = [t;(s)], in the frequency
domain Itﬁ(jw)l which suffices when they are minimum-phase (m.p.). In
fact, as previously noted”, time-domain specifications on the system
output and on as many of its derivatives as desired, may then be
achieved by means of bounds on Itﬁ(jw)l. They are shown in Fig. IV.1l(a)
for |t;(jw)|, i = 1,2,3, and in Fig. IV.1(b) for |[t,|, |ty|. The four
remaining specifications are ltﬁ(jw)| < 0.1 for all w. The first five
are called interacting and the latter four basically non-interacting
(BNIC), because ideally zero t;;, t,, ty, t; are desired for all w. But

this is impossible because of parameter uncertainty, so upper bounds
must be assigned. The matter of m.p. or n.m.p. character of the BNIC
elements is of no concern; t,,, t;, are deliberately chosen inter- acting
in order to obtain a design problem with considerable variety. The func-

tions which satisfy the assigned tolerances on t; constitute a set 7.

IV.2.2 Sensitivity Analysis

An important aspect in the design of a control system is the
insensitivity of the system outputs to items such as: sensor noise,
parameter uncertainty, cross-coupling effects, and external system
disturbances. The effect of these items on system performance can be
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Fig. 0.1 Tolerances (a) onlt;(j)|, (b) on|t,,|, [tsx(j@}|. and (c)
allocation.

expressed in terms of the sensitivity function®

T ﬁ[aT (IV.4)

Se = 7155

where § represents the variable parameter in T. Figure IV.2 is used for
the purpose of analyzing the sensitivity of a system to three of these
items.

Using the linear superposition theorem, where

Y=Yyrt+ Y + ¥n

and L = GP, the following transfer functions and sensitivity functions
are obtained, respectively:
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L F bo—] & | Y ,
- + kd
T EIR
+ <
Fig. IL.2 An example of system sensitivity analysis *
LmTN
+
db
0 >
LmTR
Fig. IV.3 Frequency response characteristics
for system of Fig. V.2
Yr FL Y ~L
Tp = = = . (a) Ty = = = (b)
R R 1+L ¥ N 1+L (IV.S5)
- yC P
=% ~1-z @
St @, sp e % o)
Te _
=z (@
(IV.6) »

Since sensitivity is a function of frequency, it is necessary to

achieve a slope for Lm L,(jw) that minimizes the effect on the system due
This is the most important case, since the "minimum

to sensor noise.
BW" of Eqg.

as illustrated in Fig. IV.3.

(IV.5(b)) tends to be greater than the BW of Eq.
Based on the magnitude characteristic of
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L, for low and high frequency ranges, then:

For the low_ frequency range, from Eq. (IV.6(b)) =--

SH = l i (IV.7)

For the high frequency range, from Eg. (IV.6(b)) --

SH = |-6(jw) | = '_‘I-f’(—‘j%“’)—) (IV.8)

The BW characteristics, with respect to sensitivity, are illustrated in
Fig. IV.4. As seen from this figure, the low frequency sensitivity
given by Eq. (IV.7) is satisfactory but the high frequency sensitivity
given by Eq. (IV.8) is unsatisfactory since it can present a serious

noise rejection problem.

Sensor noise at

! i plant input
db I/- \\\
+ LmL I >
0 ; ->(0)
- =\Cut-off
/ I | frequency
/

I
—|L(jo)|>> 1> 1—|L )| <<
Fig. V.4 Bandwidth characteristics of Fig. .2
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Based upon the analysis of Fig. IV.4, it is necessary to try to
make the phase margin frequency w, (the loop transmission BW), small
enough in order to minimize the sensor noise effect on the systenm's

output. For most practical systems n > w + 2 and

j:log[sg]dw =0 (IV.9)

For

Szl <1 -+ log[se <0 (a)

(IV.10)
S| >1 ~ logls¥| >0 (b

Thus, the designer must try to locate the condition of Eq. (IV.10(b)) in
the "high frequency" (h.f.) range where the system performance is not of

concern, i.e., the noise effect on the output is negligible.
The analysis for external disturbance effect (see Chap. VI) on the
system output is identical to that for cross-coupling effects. For

either case, low sensitivity is conducive to their rejection.

IV.2.3 Simplification of the Single~loop Structures

For the second row of Fig. III.1l0 Y;(s) has the two components due

to r;(s) = 1 and to c;(s). Their respective outputs are:
fl_']Ll Cijq.u
= XL 1 a =z I 11 b
Y, = 7 o (a) Yey = 3 VI, (b) (IV.11)

At a fixed P € ® (and hence w’ q;) |¥,|mx Occurs at

E,.
lc.i:llmax = E;tl?ii

max
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The relative phases of the t;/q; are not known so the extreme magnitude

of
= ka
Icijlmax - lK*l i LBK Ik;&l qik

resulting from among the J plants must be used in the design. That is,
where b; and b, represent the upper bounds of the control ratio t; and t,
respectively, in Fig. IV.1(a) and (b), respectively. Also shown in this
figure are the corresponding lower bounds a; and a,, respectively.

(IV.12)

There are two kinds of performance tolerances, i.e., tolerances on
t; and on t; for i # j (BNIC). For the BNIC (k,i=1,3; 2,1; 2,3; etc.)

it is necessary that

|y2‘ + yc_ul Itij(-](')) + Te (_70))' < ltijlmax +
(IV.13)

CH |max

because the relative phase of the two terms is not known, so it is
clearly best to force 1; = 0 by setting £; = 0 (i # j) in Eq. (IV.11)
for (1,3; 2,1; 2,3; 3,1). Let some fixed P be chosen as the nominal
plant matrix P, = [p;], generating a nominal P,! = [1/g;] and the nominal
loop transmissions L, = gd, SO L = L %i/dpe In this example, the
nominal plant parameters of Eq. (IV.3) are chosen as:

A, = 2 B, =0.1 A,=1.1

B, = -1 Bj; =4 By =2

A, =5 B,, =5 B,, = 4 (IV.14)
A, =1.8 By B,, = 20

By, = 10 E=2 F=2

Using Egs. (IV.11(b)) and (IV.12) the condition given by Eq. (IV.13) can
now be written (for the BNIC t;) to yield the following design

specification:
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specification:

< = = 17
1+, 1 C35913 ;: 9y}, (IV.15)
io J—= ,
110 1| g

Specification type described by Eq. (IV.15) is denoted as a D-type,
specifically Dj.

The specifications on the interacting t; terms (all t; and t;, tj)

are, using Egq. (IV.11),
a;; (@) < [t;;(J0) + 1. (o) | < by;(w)
with a;, b; being the designated bounds shown in Fig. IV.1. Suppose that

due to the uncertainty in gqj, I'rijl of Eq. (IV.11) is in the interval
(a;',b;'] [see Fig. IV.1(c)] . Since the relative phases of of 7;, 7, are

§j o

not a priori known, it is necessary that:

Ibéj * t".ul < byj, |a§j - ch 2 ajy (IV.16)

From Eq. (IV.11) the above may be summarized by Eq. (IV.16) and

/
=< 2 @ |2 - (b)
|1+ Ly = al; 1+ Ly~ | CysTu| 2: diy by,
¢i q'u‘max :

(IV.17)

Equation (IV.17(a)) is denoted as Ay, Eq. (IV.17(b)) as B;. Note that
Eg. (IV.17(b)) is almost the same as D; of Eq. (IV.15) except that T, is

not known and must be suitably chosen together with a;.,bg'. subject to Eq.

(IV.16). The results of this section are summarized in Table IV.1.

IV.3 High Frequency Range Analysis

The analysis in the h.f. range, for the case of i j, can be
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based upon the fact that the filter f; when designed to yield the desired
response has the value Iﬂﬂjw)l = 0. Thus, tn in Eq. (III.27) can be

neglected. For a 2x2 system, consider the bounds shown in Fig. IV.5,
for i = j = 1. Based upon the knowledge of the control system to be
designed, the designer selects the value of w above which the cross-
coupling effects have no effect on system performance. Thus, as shown
in Fig. IV.5, the lower bound a; is "dropped" to zero and only the upper

pound b,, is used -- eliminating the need to determine p;. Thus, from

Eq. (III.76):

b b
|1 + L] 2 Pa| Gl o 3% phere n = 222 (IV.18)
byy| G2 d;. by
In a similar manner, for L,, from Eq. (III.77), obtain:
1+ 1| > Pu|%e . 119 (IV.19)
by | @ K-

Remember that these equations apply in the h.f. range where the lower

bounds are neglected.

Note: (1) ty still needs to be specified even when £, = 0; (2) the
A ratio can be anything; and based upon the location of "noisey sensors"
might require a trade-off in the phase margin frequency specification

for each loop.

1.9

-
>0

) W
Fig. .5 High-frequency (h.f) cut-off for a,,.
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Multiplying Eq. (IV.18) by Eq. (IV.19) yields:

91192
91221

DP;12P;,
P;1P;2

(IV.20)

11+ L,f[1 + L] 2

For the 2x2 plant, the diagonal dominance condition, for w - o (say w >

«»,) 1is given by:

% 12p 21
P11Pzz

<1 (IV.21)

which must be true over the entire range of P ¢ ®. Let

Yo, = DuPa (IV.22)
P11P;z
Remember that
P11 P . 1 P2 ~Pi2
P21 P detP|-p,; Py

and

D11P;; ~ DPypP
q = detP _ P11z 12721 - p (1 -7) (a)

Paz Paz (1Iv.23)

detP = p,, (1 - ¥) (b)
Py

22

Thus, it is the zeros of the g's which determine if the system is m.p.

not the zeros of the b's.

IV.4 Stability Analysis

A 2x2 plant is used to discuss the stability analysis for a MIMO
system. The Nyquist stability criterion’ should be applied in the polar

plot domain, especially for n.m.p. g's. By substituting the equation
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for t, into the equation for t;; in Eg. (III.50), with f; = 0 for i # Jj,
yvields:

fllLl(l + LZ)

= Iv.24
R S N R A R ( )

Thus, the denominator of Eg. (IV.24) yields the characteristic equation:

(L+L)(1+L) -y, =0 (IV.25)

At "low" frequencies |L;| and |I,| are both >> |y,| and at h.f. |L,]| =

Locus of
(1+L, (@) (1+ L fj»)
for all Pe 2

-g0°

Fig. .6 Polar plots of Eq. (IL.25)

Figure IV.6 shows the polar plot of (1 + L;)(1 + L,) for all P ¢ @
(shaded area) and the locus of critical points represented by %;,. For
a LTI plant, with no parameter uncertainty, whose characteristic
equation is G(s)H(s) + 1 = 0 the "locus of critcal points" is the -1 +
jO point. Thus, for this 2x2 plant the polar plot in Fig. IV.6 can not
encircle the ), locus for P € ® or (1 + L;) (1 + L,) - 91, can not encircle
the origin. Since the diagonal dominance condition must be satisfied,
i.e., as @ » ® |pypp| >> |pubu| then the magnitude |¥12| better be < 1 or
the 4y, locus will be encircled resulting in an unstable system.

IV.5 Equilibrium and Trade-Offs

There are interactions between the rows of Fig. III.10 via the
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specifications b;. Consider the following two examples.
Example IV.1 -- Trade-off Example #1

The SFG for a 2x2 plant is shown in Fig. IV.7. For this
example assume |thu = b; and let the ¢'s represent the actual
Py values of the outputs (see Sec. III.6.2).

Column 1 Column 2

Fig. I¥.7 Equilibrium and trade-offs for a 2x2 plant.

(a) Consider -- Suppose, for a fixed value of o

--- ¢, "dominates" in the first row of Fig. IV.7, i.e.
dominates IL; and

--- ¢, "dominates" in the second row, i.e., dominates I,

——- then if the value of the specification b,, is lowered it
helps ¢,, which decreases the demand on L.

(b) Assume the terms that dominate in each row are in different
colunns. Thus, it is possible to ease the design by being

>

concerned with one or more b;'s. For example:

111




-b -b
€11 ~ q21 Ciz2 < q22 Row 1
12 12
'bll b12
Cyy = Cyy = Row 2
21 . 22 %,

If the 1,1 and 2,2 terms dominate then it is possible to ease

the design by decreasing b, and b,.
Example IV.2 -- Trade-off Example #2

For Row 1, Column 1, from the SFG of Fig. III.10 for a 3x3
plant:

C11 = —(22.3_' + .&}.), C'21 = —(.ﬁ}. + _-.bji)’ C31 = —(._Iil. + _12)
di2 di3 Q1 D3 3} qs2

The same process, as done in Example IV.1l, is used here in doing a
"trade-off" on the specifications for one or more b; in order to

hopefully achieve the desired dominance through the analysis of:

| gy | |-b21 + b31:| > |qzz||_bu . b31:l > | g rbu + b2l]

|1+ L] 2
by quzl Qs3] by, qull | Q2 by Uq:uI [ g3 |

For example, suppose b, is decreased from 0.1 to §. (Decrease of b,
is permissible because the BNIC Itu| < by 1is required.) This
decreases |e¢;| and |e;| in Fig. III.10, which eases the burden on
L, and L; for satisfying y,; € 7, and y; € 73, assuming that y;; and
y; dominate L, and L;, respectively. But it makes it harder on L,,
because now |yy| < & instead of 0.1. This does not matter if y,
dominates L,. If so, b, can be decreased until say y, imposes the
same burden on L, as does Yy,, denoted by V¥, V- Any further
decrease of b, involves 'trade-off', i.e., sacrifice of L, for the
sake of L; and/or L;. However, it is conceivable that before y, "y
occurs, either y,, (or y;3) Yiur OT Y3 (OF ¥i3) Vi There are a

bewildering multitude of possibilities and options.

As illustrated by these examples, it may be possible to modify one
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L3

or more b; until the dominant terms 1lie in the same column. To
accomplish this may require a "trade-off" in one or more of the system's
performance specifications. There are a bewildering multitude of

possibilities and options. Is there a simple rule for determining when
'free' easing of burdens is no longer possible, and only 'trade-off' is
available? This question is partly answered by the following definition

and theoren.

Definition

Equilibrium exists when it is impossible to reduce the burden on
any L;,, without increasing it on some other L.

Theorem

A necessary and sufficient condition for equilibrium is when all
the L, are dominated by the members of the same column, i.e. yjy,

i=1,2, ... ,mdominate the L;, with j any fixed column. This does
not preclude y;, ~ Yx  --- for one or more i,k. See Reference 32

for proof.

Clearly, a number of equilibria can exist, as any column may be
chosen. This variety offers the designer very useful design freedom.
He may wish to economize on some L,, according to the circumstances - for
example, if the sensor on Yy, is noisier than the others, or g, has
elastic modes in a rather low » range, so it is important to reduce
|Ik(jw)| rapidly compared with w. It is also emphasized that all the
above discussion is at a fixed «; value. It may be desirable and it is
certainly possible to have different columns dominating at different o,
values, and the design technique offers this kind of flexibility. The
potential profit to be gained by exploiting column dominance is greater
at high frequency because the §; tolerances are greater in this range of
w, i.e., 8 = b; - a; is greater than in the "low frequency" range.

The above analysis led to the low and medium frequency bounds on L,

shown in Fig. IV.8.
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Fig. V.8 Bounds in Nichols Chart on Lio(j(,o), i =1,2,3, and L, designed.

Trade-off

After equilibrium has been reached, it is still possible and may be
desirable to do 'trade-off' -- that is, sacrifice one or more L, for
others, e.g., in the situations noted above. Thus, say column 1
dominates all L; but it is highly desirable to reduce L. In Fig. III.10
one or both of b,,b; may be reduced thereby decreasing Icul but making
the specifications harder on y,,ys. Assuming that y, = Y2 then it is
also necessary to reduce one or both of b,,b,. At low w values, the

amount of such improvement is quite limited, because b; > a; (in the

interacting y;), and the difference between b; and a; is small at low w
(see Figs. IV.5 (a) and (b)). Also, as b; = a;, the sacrifice of L, - «,
for the sake of very small improvement of some other L. In serious
situations, the designer can then consider modifying the (a;,by)
tolerances. This is another of the valuable insights offered by the
design technique. The trade-off situation is radically different in the
high frequency range.
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IV.5.1 Trade-off In High Frequency Range

At large w, the a;(w) of the interacting t; of Figs. IV.1(a) and (b)
become so small that they can be made zero. Hence, the A; in Table IV.1

can be ignored and each 7, = b;, so all the constraints in the table are

now of the D type, i.e., replace the B; by D;. There is now no limit on
the permissible reduction of the by and the problems of 'equilibrium' and
'trade-off' become so simplified, as to permit analytical derivation of
the bounds B;(jw) on L.(jw). First the claim that the b; are optimally
chosen so that D;"Dy, ... , Dy Dy, for all i,j is easily proven.
Suppose, (with no loss of generality), that D, dominates L;. Reduce by,
(recall it has replaced T7,) until D;;"Dy. This certainly doesn't hurt

L, and helps Dp, i # 1. Hence, if any D, dominates I, this reduction of
b;, helps L. If not, a single D, does so, then there is at least no harm
in this reduction of b;,. Similarly, reduce b;;, until Dy;"D;, Dy. Using
exactly the same argument, one can deduce that Dy~ D,,”D,, etc., for each

row.

The above result applies even if the lq11/q12|max are different in the
elements of row 1, etc. However, if they are the same, as they are in
this case then let v; 2 |qﬁ/qij|lmx which appear in row i of Table IV.1

The above give

b, _ by, = b 4 A
Visbay + Visbs Vipbys + Visbs, Vipbys + Visbss ' (IV.27)
bkl - ka -
> = 3 = & Ag (IV.28)
Fi bz f 71 eiPiz
Consider the m equations
b
k1 = Ay fork=1,2, - ,m (IV.29)
lz#kvkibiz ‘
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which constitute a linear homogeneous set in the m b,,. For a solution
to exist the determinant of the coefficient matrix must be zero. This
matrix, denoted by ¢ has v; for its off-diagonal and A, as its diagonal
elements. Exactly the same matrix results by taking any a value in the

set of m eguations
by

——k =2,
Z Viibia

The choice of the A, is up to the designer but he or she can choose only
m - 1 of them. The condition det ¢ = 0, determines the last A value.
In this way, the designer can deliberately sacrifice some loops in order

to help others.

For any fixed j, the above set of m equations in by (k =1, ... ,
m) is homogeneous, so the ratios b;/b; k = 2, ... ,m are determined by
the choice of the A\,. Even if the b,/b; emerge very large, one can
always make the b;; small enough so that the b, satisfy the tolerances.
Hence, it is not necessary to solve the equations for the by/b;. Of
course, this is true only because all a,; = 0. If the above approach is
used at lower w, where some or all a; # 0, the b;/b; should be
calculated, in order to be certain that the tolerances are not violated.

Example IV.3 =-- Trade-off Example #3

Equations (III.38) - (III.41) for the 2x2 plant, where f; = 0
(1 # j), in the high frequency range simplify to:

Column 1 Column 2
C,, Q. C1,Q
t,, = =711 < p a) t 12711 < p b
Rowld by = 77 L, R L, iz (D) (IV.31)
. Ca4 . CaxDy
EQ}Y_.Z. t21 ~ "1—2.1;_—21"22' < b21 (C) t22 ~ 1 + L22 < bzz (d)

Substitute into these equations the expressions for c;'s from
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Example IV.1 to obtain the following set of equations:

Column 1 Column 2
Row 1 -b,1311/ 1z b,,q,/ a1,
1+ L s by (a) 1+ L, < by, (B) (IV.32)
=b,1 @50/ Tra ~by, @52/ Doy
—i1F22l 221 < p —22722 22 < b d
Row 2 1+L . (©) 1+ I, < b,, (d)

The equations in Eq. (IV.32) are rearranged, in order to perform
a frequency domain analysis, as follows:

Column 1 Column 2
dul| | P2 1| | b2
Row1l |1 + L] 2 |[=| == (a) 1+ L] 2= (b)
| ll 2| | b1 | 1| d,.! | by (IV.33)
@zl | ~b1a @z | =b1z
Row2 |1 + L,| 2 |2 |—| (¢) [1 + L,| =2 |=22| |[—| (@)
| 2| @l | b 1 Q|| b2z
Suppose that
b. b
|1 = {223 5 {221 = | (IV.34)
1| b11 b12 | 3!
and
b
|1/4,] = %—1- < —51—2 = |1/A,] (IV.35)
21 22

then the 1,1 term [Eg. (IV.33(a))] dominates over the 1,2 term [Eq.
(IV.33(b))] and the 2,2 term [Eqg. (Iv.33(d))] term dominates over
the 2,1 term [Eg. (IV.33(c))]. Thus a diagonal dominance exists.
The objective is to balance the dominance across all columns. For
example, in this case, by, is increased until both terms match,
i.e.,
A = =by/by = =bp/b, = A=A

then
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1+ L] 2 A

for the 1,1 and 1,2 terms of Eq. (IV.33) and

L2
2%

1

|1 + L] 2 I

for the 2,1 and 2,2 terms of Eq. (IV.33). Thus the dominance is

now "balanced" across all columns for this 2x2 plant.
Note that in the high frequency range the problems of equilibrium
and trade-off become simplified. This simplification permits an

analytical derivation of the bounds B;(jw) on L,(jw).

IV.5.2 Some Universal Design Features

For a 3x3 system the bounds B;(jw) on L;(jw) tend to be
significantly larger (more stringent) than those on L,,, L,, in the low
and middle w range, where the trade-off opportunities are 1limited
because the interacting a; # 0. In the higher w range, when Egs. (IV.27)
and (IV.28) apply, there is much greater scope for such trade-off. This
was utilized to help L, in the higher w range by setting A, = A\, = A\, and
solving det & = 0 for A;. As the v; are functions of w, det & = 0 gives
a relation between the A, which is also a function of w. The result is
shown in Fig. IV.9 for w > 100, for which the v;(jw) are fairly constant
with w. Given |1 + LJJ < A, and L; = L.4;/49;, one can find the bounds
on L, which of course depend on the set Q0 = {g;}. The results are shown
in Fig. IV.10, where: Fig. IV.10(a) corresponds to A\, = A\, = 1, \; = 2.3
dB; Fig. IV.10(b) corresponds to A, = N\, = 0.7, A; = 2.7 dB; and Fig.
IV.10(c) corresponds to A\, = A\, = 0.5, A, = 3dB. The q;(jw) are almost
constant with w for w, > 100, so these bounds apply for all ; > 100.
As expected, the larger A becomes, the easier it is on L;L,, and the
harder it is on L;,. The big difference in the bounds in Fig. IV.10 1is
due to the small A compared with the large A; that were deliberately
used. For this reason the actual L;,(jw) was able to reach its final

asymtotic slope at w ~ 250 (see Fig. IV.11l) compared with ~ 450, 230 for
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L,,,L,, even though |L3o| is much more than |L10| ’ ILZOI at low and medium w.
The L, chosen to satisy the bounds are shown in Fig. IV.11. Design
simulation results were highly satisfactory and are shown in Fig. IV.12

for extreme plant parameter combinations.

-150°

-180°

Fig. .10 The resulting bounds on L  for various A values for ® >100.
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Fig. IZ.11 Bode plots of L;(j®)
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Fig. IV.12 Simulation results for representative step responses.
IV.5.3 Examples -- Bounds Determination
Example IV.4 -- 2x2 Plant
Consider the 1,1 MISO equivalent of Fig. III.10, with r; # 0
and r, = 0. Thus: .
-
£y =ttt where
_ Lty = 91161 _ Tby
I ’ c. 4 11 .
H 1+17 1 1+1 dis »

The 1,1 cross-coupling expression for the bound determination
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L <

»

becomes:

911C11
T+ L,

t,.. = <7 (IV.36)

Ci1

This expression is rearranged to the following format:

Q| Bz (IV.37)
qu

T
€11

11+ L] 2 911C11

C11

where |121| = by.

Next, consider the 2,1 MISO equivalent of Fig. III.10, with

f,, = 0. For this example, since

£ ® &,

then the upper bound for t, is by, i.e.,

Cz1922

= > (—21722
T 21 1+L2

C21

This expression is rearranged to the following format:

(IV.38)

where the maximum magnitude b,, from Fig. IV.1(c) is used for t.

Equations (IV.37) and (IV.38) are inverted, respectively, to
yield the following equations:

| 1 < |q13 tcn

<M (a)
ll + Ly lgn by ™ (IV.40)
1 Q31| Doy
< <M _(b)
|1 + L, Q2| by 2
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By letting ¢, =1/L, and ¢, = 1/L,, these equations become

s M _(b) (IV.41) €

)+

which are now _of the mathematical format regquired in order to use
the N.C. Note that:

(IV.42)
8 =-LL

Thus, based on Egs. (IV.41) and (IV.42), the rotated or inverse NC
must be used in conjunction with the templates to determine the
cross-coupling effect bounds B, (jw;) and B,(jw) for ¢, and &,,
respectively.” These bounds are transposed to the regular NC to

become bounds for L, and L,, respectively.
Example IV.5 -- Boundary Determination for Example IV.4

Consider for Egs. (IV.40(b)) and (IV.41(b)) that:

L

Lm(—bil-) = -40 dB Lm(
q22

5 ) =ILm g, - Lmnqg, Imq, =4 dB
11

Thus

Lm[ 1 ]zm[ 4 }s—40dB+4dB'LmQ2z

= -36 dB - Lm g, < Lm M,

(IV.43)
For this example, B, 1is determined in the high frequency range
where the templates are essentially a straight line. Assume for -
this example that ¢, is independent of q, (not true in flight
control). The graphical technique for determining this boundary is
illustrated in Fig. IV.13 as follows:
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Trial 1: From Eq.

the inverse Nichols Chart.

(IV.43)

First trial

Actual value

of d,
2!
+6 dB
-20 dB

value for d,
i
ILm gy, = =36 dB - (-18 dB) = -18 dB # Lm Qy; =
Lm gy = =36 dB - ( -2 dB) = =34 dB # Lm dy =
{
Trial 2:
{
ILm g, = =36 dB - (-42 dB) = =6 dB = Im qy, =
Im g, = -36 dB - (-16 dB) = =20 dB = Lm g, = -20 dB
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In Trial 2 the trial and actual values agree resulting in obtaining
a point on B,. In a similar manner other points for this boundary
can be obtained. This procedure is automated in the MIMO QFT CAD
package of Chap VIII. €

Usually the dominating case(s) on a grid line are quickly
found. Thus, the optimal L, must lie on or below the boundary -

>~

=B (jw;) vs L&

on the inverted NC where the values

-B, (jw;) vs L8,

for various values of ’Z?z = Z}z, are plotted on the regular NC to
obtain the boundary

B (F00)]

Ta2zpg

then L,, must lie on above this boundary.

For Prob. IV.1, in trying to satisfy the requirements for both L,
and L,, Egs. (IV.37) and (IV.38), respectively, assume that the speci-
fications are met for L, and not for L,. Thus, for this situation by
reducing b,, allows a reduction in b, proportionaly to maintain the
requirement of Eg. (IV.37) and in turn satisfy Eq. (IV.38) for a
satisfactory L, since for this example it is stipulated that the q's are
independent. When the g's are not independent then it is necessary to
obtain the templates »

g, (Jw;) @ (J0 ;)
qy, (Jo;) @, (Joy)

in order to determine the bounds.

L)

124




’

Example IV.6 =-- Cross-coupling Boundary Determination for a
3x3 Plant

Consider the 3x3 MIMO control system of Fig. III.10. From Eq.
(IV.14) obtain

1 1 1
@ P @ @
1 1 1 12 ;3 tin 2 Gy £1,9, f1290 f139:
Ton a + 9 a tpy Lo Caa| = |£22Fe L2292 £2:9;
21 22 23
1 1 1 £y, G322 s 3,95 L3935 F339s
= — — +g
Q31 ds2 Qa3 >
(IV.44)
The first row of Eq. (IV.44) yields:
t t
R TTL R Gz D)) - L Fulu - o4
11 I, 4 +7. ha Cia
1+1, 1+ 1L, 1+L
(IV.45)

In a similar manner the expressions for the 1,2 and 1,3 expressions
for row one of Fig. III.10 are obtained.

Given that ItuImax = b; and assume, for ltlllmx = b,, that
¢,; (the actual control ratio) is satisfied. Thus, for this situa-
tion it might be difficult to satisfy ¢,, ¢, etc. If this is the
case, then the designer needs to do a "trade-off" in trying to
achieve the best performance possible. Performing the design in
the high frequency range simplifies the task as discussed 1in
Example IV.5. The equations for the determination of the cross-

coupling bounds are:

For the first row of Fig., IJT.10:
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1+ L] 2 |q, || b,y . b, ]’ > |q, || b, + b, }, |au, |[ b5 + b,
b, | gy s b, | lg2] |5 by; | |Gzl | g5
(a) (b) (c)
(IV.46)
For the second row:
|1 + I | > |qzz| by, + by, ] > quzl by, + b, ] > quzl[ ]
2 by, anl |22 b,, |q21 I A b,,
(a) (b) (c)
(IV.47)
For the third row:
|@ss|[ by b,,
1+ L,f 2 + , 2 ( ), = ( )
| 3! by, lq:u' |z | (IV.48)

(a) b) (c)

Consider the interactions between the rows of Fig. III.10 via
the b; specifications. For example, suppose b, is decreased from
0.1 to a § value. The decrease is okay because for BNIC Itﬂ| < by
is required. This decrease in turn decreases |c¢;;| and |e¢;| which
eases the burden on L, and L; for satisfying y,; € $; and y; € $.
This is based upon the fact that y,; and y; dominate IL; and 1L,,
respectively. Thus, the design for L, is more difficult because
Ile < § instead of 0.1. This may not matter if y,, dominates I1,.
If so, b, can be decreased until, for example, y, imposes the same
burden on L, as does Yy, (Y, Y»). Any further decrease in b, may
involve a "trade-off." i.e., requiring a sacrifice on the specifi-
cations on L, for the sake of 1, and/or L;. However, it is conceiv-
able that before y, "y, occurs, either yp(or yis) "¥i O ¥»(Or yi) "Vs .

There are other trade-offs that may be possible to investigate.

In summary, for the h.f. range, the main factors to keep in

mind in trying to achieve column dominancy are:
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1. Adjust the b;'s until one column dominates.

2. Once Item 1 is accomplished, try to make the nondominant
elements in each row equal the dominant ones by reducing the b;'s
in each denominator. This will make all three columns equal and
allows one to use any column as the constraining column. This
reduces the 3x3 matrix of constraints to a single constraint on

each loop, i.e.,

|1+ L, 24, |1+L|2B |[1+IL]z2C

3. From Sec. III.7, with respect to Condition 2 (e.g. a 2x2
plant) if

|P12P21 <1

DP11Pz2

is not true then renumber the output terminals. For

example:
6, =~ ¢z b, - O
Thus, for the original 2x2 plant:

¢, Uy
P = [d)zl = [ D;j ][uz

For the renumbered system:

_|Puty * Prpl

DUy + Dol

_|Pailhh ¥ Pprlly

I
D21 D22
P U * P,

4)/
® = ) / /
D11 D12

o)

ul}
U,

which results in Condition 2 being satisfied, i.e.,
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> 1
/ _J
Pi12P2;

4. Items 1 - 3 apply to an mxm plant as well.

IV.6 Summary

The reader is urged, in performing a QFT design, to constantly
refer to Chap. VII. This chapter discusses the case of plants having
r.h.p. zeros and/or poles. It should be noted that if each p; of P does
not have the same value of excess of poles over zeros then as w — o the

templates may not be straight lines.

IV.7 Problens

Iv.1 In a 2x2 MIMO system r; # 0 and r, = 0, thus only t; ant t,
are involved in the design. The specifications on t, are:

w | 0.1] 0.2} 0.5} 1 2 5 10
b, |1.02|1.07]1.09]|0.97{0.65]0.25]| 0.05

a, |0.95/0.92]|0.80(0.55[0.20| O 0

The specification on t, is that b, = 0.01 for all values of w and

the specification on each I; satisfies

< 2.3 dB

e
1+ I,

The plant is described as follows:
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q =k G = Kipr @y = Kpyr @ = ki
0.2sk,s1, 0.5<k,<2, 25k, <5, 0.15k,s0.5

Note: the g's are assumed as real numbers (gain uncertainty only)

thus ., = [(1)(0.5)]1/[(0.5)(2)] = 0.5. Choose the following
nominal values:

(a) Find the bounds on L;, at o

]
o
=

-~
o
.
[\N]

0.5, 1 and 2.

(b) Use

fale
b, \ @2

to find the bounds on L, for the same values of w as in part (a).

1
1+ L

Hint: use the "inverse NC" for this purpose, i.e, let
L, = 1/L, to obtain the form £,/(1 + £,).

IV.2 Given T = [I + PG]'PGF whose poles are given by

(1 + png1) (1 + Pr92) = PngPxd:

Prove that instead, one can consider the zeros of

d11 922

(1 + g,97) (1 + @,,9,) - g

for determining the stability of the systemn.
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IV.3 Given a 2x2 plant whose Q matrix is
kll k12
k21 k22
1<k,<2, 0.5<k,<2, 55k, <10, 0.5<k,, <1

where

Q = _1..
S
@@l < |@2@| as s~ =, r(t) =0

The specifications based upon input r,(t) are:

|tn| < 0.1 for all w

and for Lm t,(jw)

(8] 0 0.5 1 2 5 10 20
Im b(jw) 0 1 1 o] -4 -10 -20
Im a(jw) 0 -2 -4 -8 -20 -0 —00

Additional specifications on I; and L,, respectively, are

< 3 dB

L
< 3 dB Lm 2
1+L,

1
1+ I,

(a) Design L,(s) and L,(s) by designing L,(s) first and letting
f12 = 0.

(b) Redesign L,(s) where 0.5 < kjp < 1.2 and L;(s) of part (a)
is not affected by the change in k.
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Chapter V MIMO System Design Method Two-Modified
Single-Loop Equivalents'’?7”

Vv.1 Introduction

The design technique of Chap. IV inherently involves some over-
design, as seen from Eq. (IV.1), in which t,, t; can be any members of
their acceptable sets Ty, T and dj, Jj3 any members of their uncertainty
sets. As noted in Sec. IV.2, it is therefore necessary to use the worst
case values which leads to overdesign. Actually, in the real world,
there is a correlation between the t,, t; and the q;, dis, etc, that is,
it is possible that q;, is large when t, is large, etc. Such correlation
can only help make c¢;; smaller. Thus, for Method One, it is not possible

to use this correlation, and so one must take the largest t,, the

smallest g,,etc. This is the price paid for converting the MIMO problem
into the much simpler MISO problems, and avoiding having to work with

the horrendous denominator in Eg. (III.24).

Another disadvantage of Method One is that there emerges a certain
inequality (see Sec. III.7, the diagonal dominance condition) which must

be satisfied by the plant elements: for m = 2, as @ = @ it is:

|Py, (70) Pya (F0) | > |Pia (J@) P,y (@) | for allpe (o (V.1)

or vice versa. (Rosenbrock's® dominance condition is tougher. It
requires this inequality to be satisfied over the entire frequency
range, not just as s - =, His method can therefore not be used for the
3x3 example of Chap. IV). The equivalent of Eq. (V.1) for m = 3, as o
- o, is
|plas] = |DiiDsph| > |piipsapiz| + |pizpaipis| + |piepzapai| + v.2)
lpIB:p;ZP;ll + |PI3P§1P§2|

It turned out that Eg. (V.2) was not satisfied by the FY-16CV 3X%3

131




lateral system for any p € ®. Thus, it was necessary to seek a
modification of the technique that succeeds in avoiding the condition of
Egq. (V.2), and involves less over design than Method One. This
modification lead to the development of Method Two®. The necessary

constraints for Method Two are discussed in Sec. V.6 and in Appendix A.

In summary, Method One is used when the diagonal dominance
condition can be satisfied and when the BW constraints can not be
satisfied by Method Two (this BW constraint is discussed in a latter
section). Method Two is used when the diagonal dominance condition can
not be satisfied and/or where overdesign needs to be minimized. The
MIMO QFT CAD package (Chap. VIII) has implemented both design methods.

V.2 Design Equations For The 2x2 System

In Method Two the same design equations as before are used for t,,
t;, or alternatively t,, t,, (as in Fig III.10 for m = 2). Thus, for Fig.
V.1 and for an impulse input, Egs. (III.35) through (III.38) yield:

£15L, + €150y,

C15 = Y15 = 1+ I, (a) L; = 9:9:; (b)
(v.3)
-t *
cy= 2H (@ tyen, (@ - Ipil - (/g (o
c1‘=-t2'/q]2
1
f4j 9, dy

-1
Fig. ¥.1 MISO structure for t.'”
(j=1,2), Eq.(X.3)

CZie

-1
Fig. ¥.2 MISO structure for t2]
(J=1,2), Eq.(¥.4)
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The objective is to choose £y (s), f(s), 9;(s) such that the yj(s)
has no right-half-plane (RHP) poles, and satisfy the tolerances on
Itﬁ(jw)l, VPe®andV t, € 7 appearing in ¢;. These are precisely the

MISO design problems of Sec. III.é through III.S.

When t;; is substituted for yj in Eq. (V.3), the resulting equations
are exact. Hence, if indeed y; € 7y for all ty (of c;) € 7y, P € @, then
the design objectives for t; have been achieved by the f;, fj,, g but

only if actually t, € T7y.

The final step, in the 2x2 system, is to choose £, £, 9, to
ensure that the t, (s) have no RHP poles and that t,, € 7,, P € ®. 1In
Secs III.6 and III.7 the design equations are again Eq. (V.3) with 2
replacing 1 and the c, containing t,,. Instead, here, there are used
equations independent of the t,, by simply finding t, from
T = (I + PG)'PGF: '

f2jL29 + c2j 9,az, (1 + Ll) (b)

Ly = —TTE— (a) L,, = 92T ™ 1 -1, + L,
sl f . 1 - V.4
vy = DEEE () = Sialnl - Tu @ 7Y
D;iD;; 1-Y+t 14y

P = [pji] (e)

with the MISO structufes of Fig. V.2. This design is done after the
design of Eg. (IV.17(a)) has been completed by means of Egs. (V.3(a-d)),
so that L,, f,;, and f;, are known (Use I, not L,, —-- see Appendix A). It
is then necessary to find g,, f;, and fy, so that in Fig. V.2 the outputs
vy, and y, are stable and satisfy the tolerances on Ile and Itnl,

respectively. These are single-loop problem similar to Fig. V.1, except
that only the uncertainty P € ® need be considerd, as the c, in Egs.
(V.4(a-e)) are not functions of the elements of 13, which they are in
Egs. (V.3(a-d)). At each step, design execution is that of a MISO
single-loop system -- which is what makes this design procedure so

tractable.
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The theoretical justification of the above design procedure is as

follows:

1. The design specifications are satisfied for t,, of Fig. V.2, by
the proper choice of the f,, and g, for the given f;, and g;.

2. Thus, the design is satisfactory for t,, and t, because Egs.
(V.4 (a-b)) are exactly the expressions for t, and t,, (even if

the specifications for t,, and t,;, are not satisfied).

3. Now Fig. V.1l has been designed [via Egs. (V.3(a-d))] so that y,
and y,, are stable and satisfy the specifications on t;; and

t, VP € @, if the t, appearing in ¢;; are in 7, (which they are).

4. The equations for y;; and y,;, correspond precisely to those for t;

and t,,, respectively.

Thus, no fixed point theory is needed to rigorously justify this design
procedure, although the idea and approach are motivated by the fixed
point method in Method One. There, the design equations for t, and t,
are of the same form as Egs. (V.3(a-d)), with the c; functions of t;;, so

fixed point theory is required to justify Method One.

V.3 Design Guidelines

The following items are intended to provide the reader with a
heuristic insight to the design process.

1. Designation of the order of loop shaping -- The order in which
the loops are to be designated and designed, i.e., L,, L,, etc,

in order to achieve arbitrarily small (a.s.) sensitivity?, is

based upon the following:

(a) Choose the loop that satisfies
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detP

——————— be m.p. .
(AdFP) ;; p (V.5)

dii <

as Loop 1 - g; = ¢;. Note: for non-square plants the use
of a weighting matrix W = {w;} is required in order to
achieve an effective square plant matrix P, = PW

since a square plant is required for a QFT design (see
Sec. V.10). If Eg. (V.5) is not satisfied, see Constraint
1 in Sec. V.8.1, then an adjustment of the "weighting"
factors w; may result in satisfying this requirement.
Even if this requirement is not achievable a satisfactory
design may still be possible depending upon the
application (see Appendix B).

(b) When applying Method Two, if qy is m.p. then dq,., etc.
will all be m.p.

(c) When applying Method Two, in general, if more than one
loop can be m.p. choose the loop that has the toughest or
most stringent specifications as Loop 1.

Template width -- If 3w, € for all & > , so that the width of
8q,,(jw) does not exceed 180° - y, where 7y is the desired phase
margin angle vy, then it is possible to achieve a.s. tolerances.
If this condition is not satisfied then it is impossible to
achieve a.s. tolerances for w > w,. This prevents a.s. sensi-

tivity if

_ HJ(s+z) (V.6)

11 ¢s + p)

g1

with gain k (a * uncertainty value) is independent of the signs
of z, and/or p,. Must exclude numerator or denominator factors

of the form (1 + Ts) where T has a % uncertainty value and is
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independent of other parameters. See Constraint 2 in Sec.
vV.8.1.

3. For the 2x2 plant if
(a) vy is "small" then gy, = dy-.

(b) v; is "large, i.e., I%J = 1 then g,. can be unstable.

This may be okay but may lead to a wide BW for L,.

4, If there are transmission zeros in the RHP it only indicates
that g; may be n.m.p. or the det P may have zeros in the RHP.

V.4 Reduced Overdesign!’

Figures V.1l and V.2 are the same as Fig. III.10 (for 2x2 system)?
in which t,, and t,, appear in the cross-coupling c¢;; and c;,, respectively.
There is inherent overdesign in Fig. V.1l because in reality there is a
correlation between the t, and t, and the q; of P'. This correlation is
not being exploited. The uncertainties in t, € 7, and t, € 1, are
assumed independent of P € @ in Figs. V.1l and V.2. But such overdesign
does not exist in Fig. V.2 because c, and c,, are not functions of the
elements of any 7. In Fig. III.10, for the second row of the 2x2
system, the design for t,, and t,, by Method One involved overdesign
precisely as in the first row of this figure and in Fig. V.1l. The above
procedure can, of course be reversed with y, and y,, using Eq. (V.3) with
1 replaced by 2 and with t,; and t,, using Egs. (V.4) by exchanging

numbers 1,2.

V.5 3x3 Design Equations

Let y;;, J = 1,2,3, be the same as in Secs. III.6 and III.7, that is:
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£,;L, + Cy5Qy
iy = = i + Llj L, L =giQu, €1y = “Bty/di (v.7)

giving MISO problems. L; and the three f;; are chosen so that y,; are
stable and satisfy the tolerances on t; for all t; € Ty appearing in c;
in Eq. (V.5(c)) and for all P ¢ ®. The equations for y, are obtained
from the second row of Fig. III.11 in which t; and tj; appear, but the ty
are replaced by the y,; of Eq. (V.7), giving for j = 1,2,3

foile, * Ca2j 9,4
= 5 a), L, = 2922 b),
V23 1+ lz. (a) 20 1 - Y12 (b)
1+L,
_ Lipx _
Da = T 1+ ) () Ly, = 9,2, (d),

L, D21D13 . . (v.8)
Cz5 = t3J - Da3| — f1jp21 (e),

92 D11 (1 + L)

Pt = [pi;] (f)

again resulting in MISO problems. L, and the f; are known from the
designs of Egs. (V.7). In Egs. (v.8) the f, and L, are chosen so that
Yy are stable for all tj € 7y appearing in c; and, of course, for all

P € ®. Although the forms for ¢, and L, in Egs. (V.8) are different from
those in Egs. (V.7), they are otherwise identical in form, so the design
techniques for both are basically the same, as detailed in Reference 22.

Finally, MISO design equations for tj are obtained by finding tj
from T = [I + PG]'PGF, or from the third row of Fig. III.10 for i=3
and eliminating t; and t, by means of Egs. (V.7) and (V.8). Thus, the

resulting equations are:
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f3jL3 T Cay L,¢
37 = _T+_L3_ (a) ’ 'L3e = _C___A (b) ’ L3 = g3q33 (C) !

(w3
|

C = (l + L1) (1 + Lza) - 712 (d)

A=y (1 + L) +y,5(1 + L) = (YiaBy * ¥a3k5)  (e)

= 2222 (), =222 (g, (V.9)
D21D33 D31D22
£,,L + £,.L
Cyy = 1%3’12 i jf] 2 D372 (h),

n, = qzzpz*Lpgz - P (1 + L?-,) (1),

N, = @y P12l31 ~ P32 (1 + L) (F)

Note: See Eg. (III.88) for the expressions for the y; terms of Eq. (V.9).

Since IL,, L,, f;;, and f, are known, the only unknowns in the Eq.
(V.9) are the f; and g;. These equations constitute single-loop
uncertainty problems, for which the technique of Chap. I applies, i.e.
they are chosen so that the t; are stable and satisfy the tolerances Ty.
Note, again, that at each step, design execution is that of MISO
single-loop systems.

The justification of the above design approach is the same as for
the 2x2 case. Suppose the nine f; and three g; in Egs. (V.9(a-j)) are
such that the t; are stable and their tolerances are satisfied, which is
so by definition here. Now the design based on Egs. (V.8(a-e))
guarantees that the t, tolerances are satisfied, providing the t;
appearing in cy are € 75 - which is the case here. Hence, the ty;
tolerances are also satisfied. Finally, the design based on Egs.
(V.7(a-c)) guarantees that the t;; tolerances are satisfied, providing
that the t; and t;, appearing in ¢; are € 7, and 75, respectively, which
have been established. In the above, there is some overdesign in Egs.
(V.7(a-c)) because the t; ¢ 7,5, (k = 2,3), (j = 1,2,3) appear as cross-
coupling effects uncorrelated to the plant uncertainty. In Egs. (V.8 (a-
f)) there is less overdesign because only the t; so appear, while there
is no such overdesign in Egs. (V.9(a-j)). Of course, the order can be
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changed and equations of the form of Egs. (V.7(a-c)) are used for the
second or third channel, etc.

V.6 Example V.1 -=- 3x3 System Design Equations

Consider the design of a 3x3 control system for which r;(t) # 0 and
r,(t) = r;(t) = 0 (thus, f, = f3 = 0). This example entails four parts:
part (1) -- the set-up of the pertinent equations, and parts (2)-(4) --
the design approach. It is assumed that the loop to be designed first is
row 1 of Fig. III.1O0.

Part (1) The pertinent equations are (refer to Figs. III.10 and
III.12):

Row 1

i t t
£i.L, - qn(gzl + '53"1‘) c..q
= 12 13 (a) , t12 = 12411 (b) ,

fu 1+ L 1+ L,
ti3 = %ig%l (c)
(V.10)
Row 2
t t
o £,,L, - Q22(—q—:1- + —q'z—;) - .. Cpo (b) (V.11)
2 1+1L, T2 1+ L !
< THE (@
Row 3
t t
. £5,L; - Q'33(£ + -a';lj . . o " .12
31 1 + L3 ’ 32 . ’
£y = fBiqZ (el
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Part (2) Utilizing Method One, the b;'s are substituted into Eq.
(V.10) in order to yield the f;; and g; that satisfy the design
specifications. 1In general, it is necessary that L, and f; be
designed so that the y;'s are stable and satisfy the specifi-

cations on t; for all t; € 7,; in c; and for all P € @.

Part (3) Substitute t; obtained in Part (2) into Egs. (V.11)
and (V.12). Apply Method Two to design f, and g, [see Eg.
(V.8)]. In general, design f, and L,  so that the Y;'s are stable
for all t; € 75 in ¢y and for all P € .

Part (4) Substitute t;; and t, obtained in Parts (2) and (3)
into Eq. (V.12). Apply Method Two to design f; and g, [see Eq.
(V.9)]. Thus, it is now possible to obtain t;, that hopefully
meets the specifications, in terms of only the parameters, that
is, the b;'s are not involved in the design of £, and g,. This
is the concept of Method Two which results in Eg. (V.12) having
only two unknowns: f; and g;j.

Note that one may initially start the design with a diagonal prefilter
F matrix in order to simplify the design process. If the design speci-
fications can not be achieved with a diagonal prefilter then it will be
necessary to utilize a non-diagonal prefilter matrix.

V.7 mnmxm System, m > 3

The procedure for generating the design equations for mxm MIMO
systems with m > 3, should be clear from the preceding sections. One
uses for any channel (say the first) design equations in which all the
t; (1 # 1) appear as cross-coupling effects. Denote these as Egs. A.
These equations can be derived or obtained from Reference 21, Egs.
(4a,b) with u = 1. For the next chosen channel (say the second), the
design starts with Egs. (4a,b) of Reference 21, with u = 2, in which all
the t,; and t, are eliminated by means of Egs. A. Denote the resulting
design equations as Egs. B. For the next chosen channel (say the
third), start again with Egs. (4a,b) of Reference 14, with u = 3, but
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eliminate all the t;; and t, by means of Egqs. A and B. The process
continues until the end, and the theoretical justification is the same

as given previously for m = 2,3.

Mixtures of the first and second techniques may also be used. For
example, for the 3x3 system, Egs. (V.7) type equations are used for the
first two rows of Fig. III.10 for both channels 1, 2 and Egs. (V.9(a-j))
for channel 3. The theoretical justification is now as follows: the
design for channel 3 is correct by definition then the fixed point
theory, precisely as in Reference 21, is used to justify the designs for
channels (1,2). This method was used for the 3x3 FY16-CCV lateral

design modes®.

The two sets of design equations for t; and t; are taken as the
mappings on the acceptable sets 7; and the third set of mappings is
simply t; € 73. The nine f; and the three g; have been chosen so that
these mappings map 7; into themselves, etc., so a fixed point exists,
etc., as in (Reference 21). For larger m, it is clear that a larger
variety of mixtures is possible, giving the designer useful flexibility.
However, the designer must understand MISO design theory used in the
design execution, which reveals the cost of feedback and the available
tradeoffs among the loops, in order to be able to exploit this
flexibility to its fullest extent.

There are additional important advantages in Method Two since the
diagonal dominance conditions given by Egs (V.1) and (V.2) are no longer
necessary. Instead the principal condition to be satisfied [to achieve
nabitrarily small (a.s.) sensitivity"] is that det P has no RHP zeros.

The reader is referred to Reference 22 for details.

v.8 Conditions for Existence of a Solution

conditions 1Or LAlSLEMVE P 2 o Tmess

This section considers the conditions required for the applica-
bility of the QFT design technique. Also, it considers the inherent,
irreducible conditions applicable for LTI compensations in general, and
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compares the two sets of conditions. This is done for a.s. sensitivity
which is defined as the BW achievement of a.s. sensitivity of the t; over
arbitrarily large (a.l.) BW. Such a.s. sensitivity also achieves
attenuation over a.l. BW of external disturbances acting on the plant.
This problem has also been studied in an abstract setting by Zames and
Bensoussan®.

In Fig. V.1, it is required that y,; € 7, and y,;, € 7, for all
Pe® t, e 75, and t,, € 75. In the general m case, the cross-coupling

component in, for example, y, is:

€%, _ _ X £, (AdjP),,/ (AdjP),,
1+9a, k1| "k 1+g de'tP (V.13)
1 (adjP),,

RHP poles of (Adj P), are normally cancelled by similar poles in det P,
since (Adj P), is a term in the expansion of det P. RHP zeros of
(Adj P),, are, of course, normally cancelled by similar ones in the

denominator. There may be exceptional cases when in det P, for example,

a RHP pole of (Adj P),, is cancelled by an identical zero of p, and does

not appear in the other terms of det P. Such cases are excluded.

V.8.1 cConditions For "a.s. Sensitivity" In Single-Loop Design

In Egs. (V.3), it is seen that a.s. tolerances over a.l. BW (i.e.
"a.s. sensitivity") for t,;, t;, are achievable if L, = g;q;; can be made
a.l. over a.l. BW. Indeed this is at least theoretically possible, if
d;; satisfies certain constraints. These have been detailed in Appendix
1 of Reference 21 so are only qualitatively described here by means of
Fig. V.3.

Figure V.3 is the extended logarithmic complex plane (NC). Since
P ranges over ®, the set {L; = ¢g;(jw)q;;(jw)} is not a single complex
number (at any fixed w) in the NC but a region, denoted as §,[L(jw)], the
template of L;, which is the same as $,[q;(jw)] but translated vertically

142

Lgl

>




'\

»

¢

by 20log[g;(jw)] dB and horizontally by Lg,(jw) degrees, because

L, = g,d;- In a design with significant plant uncertainty $[L(Jw) ] must
lie relatively high up, above the zero dB line as shown in Fig. V.3 for
w,. This is so over the important » range of t;, and t;, (their bandwidths
generally), in order to achieve the desired sensitivity reduction. Such
large values for $[L;(jw)] can be maintained theoretically for ahy
finite o range, if g, is m.p. For those w for which §,[L;(jw)] is so
located, the uncertainty in the magnitude and phase of ¢, (jw) (i.e., the
area of $,(q;(jw)], can be a.l. [Note, however, that in order to
maintain §,[L;(jw)] above the zero dB line, any zeros of d,;, (jw) on the jw
axis must be known and finite in number in order for g;(s) to be assigned
poles there. (Obviously, transcendental compensation can be used for
special countable cases.) If the range of such jw axis 2zeros is

uncertain, then the specifications

a;;(jo) < |gy(Jw)| < by;(je), VPef (V.14)

15, = t;;(jw) = set of accetable t;;(jw) (V.15)

must be modified to permit such zeros of t;.

Fig. V.3 Templates of L1(jo)) on logorithmic complex plane (Nichols Chart).




Sooner or later L,(jw) must decrease and - 0 as w - ®. Stability
over the range of ® requires that §,[L;(jw)] move downward in between the
vertical lines V, and V, without the points ... 0,0,0,, ... lying in any
of the $,[L;(Jw)]. This appears to allow (360° - 2v) degrees phase width
for $,[q;;(Jw)], with phase margin angle y. However, /L, (jw) must be
negative, on the average, in order for ILdjw)I to decrease. So in
practice only (180° - v) phase width is tolerable in this range. As o
increases and the $,[L;(jw) ] descend lower on the chart below the zero dB
line, clearly their width may increase again, but it is essential that
the points ... 0,,0,, ... never be a part of any Sp[Ll(jw)]. Unstable q;
are included in the above discussion and don't require separate
treatment. It follows from the above that the manageable uncertainties
depend on the assigned t; tolerances, but two important constraints (also
see Sec. V.3), for m < 3, are stated here for the case of "a.s.

sensitivity":

Constraint 1

q;; = det P/ (Ad]j. P), must be m.p.

If this constraint is not satisfied, for Method Two, the theorecti-
cally attainable benefits of feedback are limited. They may
nevertheless suffice for the specific system being designed (see
References 30, 37, and 42).

Constraint 2

Suppose 3w,, ? for all w > w,, the width of $,[q;;(jw)] exceeds (180°
- 9), v being a desired phase margin angle, then it is impossible
to achieve a.s. tolerances for w > . This prevents "a.s.
sensitivity" if
k[I[(s + z,)
91 T T[(s + by

with the k uncertainty including a sign change which is independent
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of the signs of the z, and p,. Also excluded is a factor (1 + 7s)
in the numerator or denominator of g;, with the uncertainty in 7
including a sign change which is independent of other parameters.

A good way to apply this constraint, for Method Two, is to obtain:

Lim |det P
wo® Idet P,

where P, represents the nominal plant matrix. This ratio must not change
sign over the range of uncertainty, i.e., P € ®. This automatically
takes care of all loops. If this condition is not satisfied then it is
impossible, by the usual LTI design techniques, to achieve significant

sensitivity reduction.

v.8.2 Applications of Sec. V.8.1 to Design Method Two

Constraints 1 and 2 therefore apply to the g; = det P/ (Adj P).
of the first channel i, used in the design technigque of Secs. V.2 and
V.5. So from Constraint 1, q; must be m.p. VP € ® (RHP poles are

tolerable), for "a.s. sensitivity" design. Suppose P = [p;] has each p;

- k;/s* as s » ». For m = 2:

e

P11Pz; ~ P12Pa1 Kiakyy = Kipkyy

gi; <

Let K = [k;], so Constraint 2 states that there may be no change in the
sign of det K/k; as P ranges over ®. In this chapter it is assumed that
all k; > 0 for all P ¢ ®, so Constraint 2 gives k;kyp > kpk, VP € @, or
vice versa. To remove the ambiguity it is also assumed that the plant
terminals are numbered so that for at least one P € @, k; Ky > KiKy, SO

Constraint 2 yields

kyk,, > kj,k,;, VPe® (V.17)

This is a diagonal dominance condition as s = which applies only to
the first channel being designed when applying Method Two. Zames and
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Bensoussan® have defined a diagonal condition as s = ©, in more abstract

form.

The above applies to the first channel, say no. 1, for which Egs.
(V.3) are used. Equations (V.4) are used for the second channel. The
m.p. condition of Constraint 1 therefore applies to q,(1 + L;,), most of
which is not new because m.p. (1 + L;) and det P are already required.
As for Constraint 2, there are two extremes. "A.s. sensitivity" can be
achieved by L; BW >> that of L, [denoted by BW(L;) >> BW(L,)], and then
Egq. (V.4(b)) implies Constraint 2 applies to q. It can also be
achieved by the opposite strong inequality, and then Constraint 2
applies to p,. For the condition assumed with Egs. (V.16) and (V.17),
with no sign changes in the k;, the results are the same. It may also
be so in the general case but this would require consideration of
simultaneous sign changes among the k;, which is not done here.

For m = 3 the application of the contraints to the first channel

makes it applicable to q;;. Application to the second, Egs. (V.8), gives
the same results as for the m = 2 case, because L, has the same form in
both cases [compare to Egs. (V.4(b)) and (V.8(b))]. If "a.s. sensi-
tivity" is achieved (as it may be) by BW(L,)>> BW(L,)>> BW(L;), the result
is that the constraints of Sec. V.8.1 apply to qj, d», dp. If the
opposite is done, in the notation of Eq. (V.9), they apply to q;;, 9/ (1
- Y1), and

Q33 (1 = ¥g,)
1= (Y2 * Ya3 + ¥13) + (Yol + Yi3B3)

It has not been assertained whether these two sets of constraints are
identical. However, Sec. V.8.3 shows that the constraints of Sec. v.8.1
must always apply to each g3, i = 1 to m. Constraints for m > 3 may be

similarly developed.

When BW is a specification it is important that one template for
each loop be obtained at their respective loop BW specification.

146

’




14

v.8.3 Inherent Constraints

It is important to determine whether the constraints in Sec. V.8.2
are due to the specific design technique or are inherent in the problen
itself. For this purpose examine Eq. (V.4(a)) for t,. How can "a.s.
sensitivity" of t, be achieved despite large uncertainty in P? Clearly
by large L,, the usual feedback method. Large L, is achieved by large
9,4, because large L; (needed likewise for small t,, sensitivity) gives
L, = 9,d».- The latter also attenuates c,,, which may not be small because
of g; in its numerator. This same principle applies to all t;, and is
basically the same as that derived from examination of Eg. (V.3), i.e.,
there is need for a.l. L, and L; over a.l. BW in order to achieve "a.s.

sensitivity". But do the constraints of Sec. V.8.1 apply to 4y and q;?

This is indeed so, and proven by Eq. (V.3(a)) and its analog for t
(by interchanging 1,2), by simply asking whether a stable t; is possible
if 1 + L, has RHP zeros? For if not, and since a.l. L, over an a.l. BW
is needed, it follows that I, (and L,) must satisfy the constraints.
Suppose (1 + L;) has RHP zeros. These are RHP poles of t;, unless in Eq.
(v.3(a)), for i =1, the numerator of t,; has these same zeros. Suppose
it has them, and there is a small change in f,. Since F is outside the
feedback loops, system stability is unaffected. The zeros of 1 + gidy
in Eq. (V.3(a)) are thereby unaffected, so neither should the zeros of
the numerator of Eq. (V.3(a)), for i = 1. The term f,,9,d;; is unaffected,
but t, is affected [see Egs. (V.4) with i = 1]. Hence, the hypothesis
(1 + L,) has RHP zeros is untenable, so the constraints apply to g, and

da.

Comparing these results with Sec. V.8.2, the conclusion is that
"3.s. sensitivity" may be achieved by design Method Two, with plant
constraints which are inherent and irreducible, i.e., not more severe
than inherently necessary. This is achieved by letting BW(L,) >> BW(L,)
>> BW(L;), wherein Constraints 1 and 2 are the only constraints applic-
able to q;, 43, Ui, which have been shown to be inherent. This is
associated with the following design order: first L, [Egs. (V.7)], second
L, (Egs (V.8)] , third L; [Egs. (V.9)]. The design procedure is facili-
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tated by such inequalities, because then in Egq. (V.8(b)), L, = L, = g,dy,
over its important design range, and L,, - L; = g;d;;. If other factors are
equal ($,[q;]) tolerances on t;, i = 1,2,3 for each i, there is a natural
tendency for this order of the inequalities because of the inherent
greater overdesign of L;, lesser of L, , and least of I; (recall Sec. V.4

and the last paragraph in Sec. V.5).

However, the above is rather of theorectical, academic interest,
because it applies only for "a.s. sensitivity", defined at the beginning
of Sec. V.8. Thus, it applies if one is given a plant with specific
uncertainty range and 1is challenged to achieve a.s. performance
tolerances over a.l. bandwidths. However, given a MIMO plant set ® and
sets of tolerances 7; (i,J = m), it is conceivable that the latter are
not achievable by Method Two, but are inherently achievable. The reason
(e.g., for m = 2) is that in Egs. (III.35) through (III.38), the demand
on L, to achieve the desired sensitivity reduction, may be greater than
is inherently needed, because of the overdesign, discussed in Sec. V.4,
and is therefore unachievable, because of tha nature of ® (e.g., it has
some n.m.p. elements). Thus, a specific problem may be incompatible
with the constraints only due to this overdesign. There may exist as
yet undiscovered better methods with reduced demand on L,, which renders
them compatible with the constraints. From See. V.4, it is clear that
the best method is achieved with Egs. (V.3) by maximum use of the
correlation which exists between the @ uncertainty and the t, € 75 in
Egs. (V.3). A sugestion for this purpose has been given in Reference
21. One subdivides the plant set into subsets ® which are correlated
with the subsets 7y of 7;. Equations (V.3), similarly Egs. (V.7) and
(V.8), are now applied to these pairs ®@,, 7, separately for each u. This
approach, to the knowledge of the authors, has not as yet been attempted

in any numerical problem.

It is worth noting that the constraints of the diagonal dominance
type as s - o, appear in the design technique of Reference 21. However,
they are always present there,even if "a.s. sensitivity" is not
attempted. 1In design Method Two the constraints are in effect only for
"a.s. sensitivity." Hence, it is possible that a specific synthesis
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problem with given r;, ® sets may not be solvable by Method One, but is
solvable by Method Two. This is the case in Reference 21.

v.9 Nondiagonal G

The constraints on P in Sec. V.8 are deduced on the assumption that
G is diagonal. Are these constraints eased if a nondiagonal G is used?
To answer this question, let H be a fixed LTI pre-compensator matrix
inserted ahead of the plant and let V = PH be the new effective plant in
the set v = {PH, P € ®}. The design techniques with diagonal G, are now
applied to set v instead of set ®. 1If H is helpful in overcoming some
constraint, then it is necessary that the constraint violated by @, is
not violated by v. The contraint det P is m.p. VP € ® is not eased at
all, because det V = (det P)(det H), and obviously cancellation of RHP
zeros of det P by det H cannot be done for many reasons. The other
important contraint involving diagonal dominance as s = ©, is also not
eased, because it applies to the sign of det V not changing, as s - .
Thus, the constraints on @ for "a.s. sensitivity" are not eased by a
non-diagonal G.

However, H may be very helpful in reducing the amount of feedback
needed to achieve specified tolerance sets given by Egs. (V.14) and
(v.15), for a given plant set ®, so that a design unachieﬁable by
diagonal G (say, because of n.m.p. P or sensor noise problems) may be
achievable via H. For example in Eq. (V.4(a)), L, must handle the
uncertainties due to L, itself and attenuate the effective cross-
coupling set {c,}. For basically noninteracting tolerances on t,; (k #
i), f; is made zero, so only the latter need exist. It may be possible
to considerably reduce |°5hm by means of H, by making V = PH quasi-

diagonal, even though P has large non-diagonal components.

Off diagonal plant elements appear in all the design Egs. (III.39)
through (III.41), Eg. (V.4), and Egs. (V.7) through (V.9) in the 'cross-
coupling' components, so their reduction via H is desirable. How is
this systematically done in the case of significant P uncertainty? For

m = 2, let the normalized H have 1 for its diagonal elements and h;;, = p,
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h,, = v. Then v, = up,; + p, and v, = p,; + vpp. The objective is to

minimize over ® max|vy|,|vy| at each w. Sketches of the sets

Py, (7o) ) (P (jw)
Py, (F0) )\ Py ()

in the complex plane, are clearly very helpful in choosing u(jw), v(jw).
However, one should check the effect on the resulting sets of

Vit = Pu + VP, Vn = Upy + Pp, because of the obligations on the loop
transmissons due to their uncertainties. The final choice depends on
the relative importance of the two terms in the numerators of Yij: ¥y in
Egs. (V.3) and (V.4). (See Reference 21, Secs. 3.2,4 for discusslon
relevant to this topic).

If the elements of P have a RHP pole in common, i.e.,
P = P;/(s - p), then one should not try to diagonalize P by means of
PH = A diagonal, because in practice H =P,’A with P,! # P! exactly, giving
PH = PP,'A with RHP dipoles. 1Instead, one tries to diagonalize P, by
means of P\H = A, giving H = P,,’7A, and PH and P,P,'A/(s - p).

V.10 Achievability of a m.p. Effective Plant det P

For some control systems (e.g., flight control) there are often
available more control inputs (£¢) than outputs (m). The inputs and
outputs or an aircraft may be selected in such a manner as to yield the
mxm aircraft plant matrix P(s). If the constraint det P(s) be m.p. is
not satisfied then it may be possible to achieve a m.p. det P,(s) for an
effective mxm plant P.(s) by augmenting the basic mxf¢ plant P, by a £xm
gain matrix W = [w;] or a frequency sensitivity matrix W = [(w;(Jw)] as
shown in Fig. V.4. The expression for the output y(s) may be obtained
by two different approaches:
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Fig. V.4 An mxm Effective Plant P (s)

Case A From the differential equations describing the system of Fig.

V.4 obtain

D(s)y(s) = N(s)u(s)

(V.18)

where D(s) and N(s) are mxm matrices of polynomials and the output y(s)
and input u(s) are mxl vectors. Equation (V.18) is manipulated to yield

y(s) = D*N(s)u(s) = P,u(s) (V.19)

where the effective plant matrix is given by

P,(s) = D*(s)N(s) (V.20)
Thus from Eq. (V.20) the following expressions are obtained:
D(s)P,(s) = N(s) (V.21)
det D(s) det P,(s) = det N(s) (V.22)
- n (s) (V.23)
det P,(s) a.(s)
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where n.(s) = det N(s), d.(s) = det D(s), and n,(s) and d4,(s) are
polynomials. Thus, n.(s) must not have any RHP zeros in order for Eq.
(V.23) to be m.p. and satisty the constraint that det P,(s) be m.p.

Case B From the block diagram of Fig. V.4, where v(s) is a £xl1 vector
and W is only a gain matrix the following expressions are obtained:

y(s) = Pyv(s) (V.24)
v(s) = Wu(s) (V.25)
y(s) = Py(s)W(s)u(s) (V.26)

From Egs. (V.19) and (V.26) it is seen that the effective plant matrix
can also be expressed by

P,(s) = P, (s)W (V.27)

where Py(s) = [p;(s)], p;(s) = ny(s)/d(s), W = [w;], n;(s) and d(s) are
polynomials, m < £, and w; is a gain to be determined in order to try to
achieve a m.p. det P,(s). Note that although in this section all the
p;(s) are considered to have a common denominator, i.e., d(s) = q;(s),
in general the p; elements of P,(s) can have different denominators

By use of the Binet-Cauchy formula® Eq. (V.27) may be expressed as

follows:

det P,(s) = det[P,(s)W] = Z[p,(s)w,] (V.28)
1

where p;(s) and w; are the determinants of appropriate mxm submatrices of
P,(s) and W(s), respectively. A sufficient condition for det [P,s)W] to
be m.p. is that at least one p;(s) be m.p. A short proof of this fact
is as follows: let p;(s) be the determinant of the mxm submatrix of P,(s)
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formed by the columns indexed by i;, ..., i . Assume that this p;(s) is
m.p. Choose W so that the mxm submatrix formed by the rows indexed by
iy, e+, in, is the identity matrix while all remaining rows are zero.
Then, clearly det [P,(s)W] = p;(s). The number of terms in the summation
of Eq. (V.28) is given by

_ 0!
€z = (¢ - m) 'm! (V.29)

Let the submatrices of P, and W, of Eq. (V.28), be represented,
respectively, by P, and W, where w = 1, 2, e.., Q,. The det P.(s)
obtained from Eq. (V.28) is

det P,(s) = detP,detW, + detPpdetW, + -

+ detpP, detW, + - + detp, detH, (v.30)
where
n..(s)
p = ij w (V.31)
b [ d(s) ]
and
Wy, = [Wijv] (V.32)
Thus each term in Eg. (V.30) can be expressed as
det P, det W, = —>—det |n;;(s),| det |w | (V.33)

dm(s)

which permits Eq. (V.30) to be written as follows:
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d?(s)

+ det |n;;(s),| det [wy; | + -

det P,(s) = Y (det |n;;(s),| det |wyy |

(V.34)

!
ny(s)
+ det [n;;(s), | det |wy; ) = d:(S)

where n.'(s) is a polynomial. Since Eg. (V.23) and (V.34) represent the
same open-loop system ot Fig. V.4 then

n,(s) _ ms(s) (V.35)
d,(s) d”(s)
which results in d4d.,(s) = d(s) and
nl(s)
= % " (v.36)
n (s) i (9)

Based upon Egs. (V.34) through (V.36) d™!(s) must be a factor of n;(s)y.

The following development illustrates that a sufficient
condition for the existence of a m.p. det P, (s) is that at least
one det P,(s) must be m.p. Assume

det |n;;(s),|det |w;; | = det |n;;(s), ]k (V.37)
in Eq. (V.34) is m.p. where k; = det |w; | is a scalar. Factor out d™!(s)

from every term in Eg. (V.36) and let

X det |n;;(s),]
1 dar-1(g)

= kN, (s) (V.38)

Also, let the summation of the remaining terms, after factoring out
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d™!(s) from each term, be expressed as

1
kN, (s) = —=—[ det |n;(s),|det |wy; | + -
2772 dm-l(s) I J 2| l le (V.39)

+ det |ny;(s), |det lWij,zl ]

where k, is a scalar. Note: k;, k;, and N,(s) are now functions of w;
which are to be selected in order to try to achieve a m.p. P.(s). Based

upon Egs. (V.38) and (V.39), Eg. (V.29) can be expressed as follows:

_*_

det P,(s) = <

[ kN, (5) + kN, (5) ] (V.40)

In order for det P.(s) to be m.p. then the zeros of

kN, (s) + k,N,(s) =0 (V.41)
must all be in the LHP. Equation (V.41) is manipulated to the
mathematical format of

ﬁ M = -1 (V.42)
k,} | N, (s)

which permits a root-locus analysis of Eq.(V.40). Since the zeros of
Eg. (V.42) are in the LHP then the weighting factors w; are selected in
hopes that all roots of Eq. (V.41) lie in the LHP for all P, € P. This
assumes that throughout the region of plant parameter uncertainty, the
jnitially chosen m.p. submatrix in Eqg. (V.34) is m.p. for all P, € P and
be expressed by Eg. (V.38). To enhance the achievability of m.p. det
P.(s) the following guidelines may be used:

1. Determine the number o, submatrices of P of Eg. (V.34) that are

m.p.
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2. Select one of the m.p. submatrices to be identified as Eq.
(V.38).

3. The values of w; of W,, associated with

(a) The remaining @, - 1 m.p. P, be altered in such a manner
as to increase the values of their corresponding det W,,.

(b) The @, - @, non m.p. P,, be altered in such a manner as to

decrease the value of their corresponding det W,,.

By changing the values of the gains w; in the manner described will
result in the ¢, - 1 m.p. terms of Eq. (V.39) to dominate in the result-
ing expression for N,(s). This dominance of the o, - 1 terms in N,(s) may
result in N,(s) being m.p. Also, 1t may enhance the achieveability of
a m.p. P,/(s) by the analysis of Eq. (V.42).

Once the n;(s) and w; are specified, in order to simplify the
root-locus computational effort, it is necessary to factor out d(s) from
the numerator polynomials of Egs. (V.38) and (V.39). Depending upon the
CAD package that is utilized in determining d(s) and the numerator

polynomials of these equations, a perfect factoring may not exist.

Now consider the most general case, i.e.,

_ |n1-_j(s)w n,(s) V.43
det B, detldi'(s)w a.(s) (V.43)
and
.5 (S) w,(s)
det W, --detlw'IJ L4 L4 (V.44)
By Ihij( )y h,(s)

where the d;(s) and h;(s) are not all the same and where ny(s), d4,(s),

w,(s) and h,(s) are scalar polynominals. Hence
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n,(s)w,(s)

i Alutdihid Aduids V.45
d,(s) h,(s) (V-49)

det P,(s) = )‘;[

For each value of w, n,(s)/d,(s) has a range of uncertainty which

may be correlated with that of the remaining @, - 1 submatrices of P(s).
Thus for the general case some or all of the n,(s)/d,(s) may have RHP
zeros and/or poles. The problems now becomes one of trying to choose
fixed w,(s) and h,(s) polynomials so that the det P.(s) has no RHP zeros
over the entire range, or failing that to have them as relatively "far-
off"; as possible. This problem has been studied by several researchers

and the resulting techniques may be used for this purpose?1i4,

Thus, the Binet-Cauchy formula permits the determination if an

m.p. effective plant det P.(s) is achievable over the region of plant

uncertainty.

V.11 Summary

This chapter has presented synthesis techniques for highly uncer-
tain mxm MIMO LTI feedback systems with output feedback, with the

following features:

(a) There is detailed control over the m’ individual system

transfer functions.

(b) The MIMO uncertainty problem is rigorously converted into a
number of MISO uncertainty problems. Solutions of the latter
are guaranteed to be satisfactory for the former. Relatively
simple MISO single loop feedback techniques can be used to
solve the MISO problems.

(e) For "arbitrary small sensitivity" over arbitrary large
bandwidth (BW), the technique in Secs. V.2 through V.5, give
constraints on the plant which are inherent and irreducible,
i.e. every LTI compensation technique has these constraints.
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(d) Part of the constraints (at infinite s) in (c) were always
present in the previously developed MISO eguivalent technique?,
i.e., even if "a.s. sensitivity" was not required. They are
present in the new techniques only for a.s. sensitivity. Also,
fixed point theory is not required for justification of the new
technique.

(e) The overdesign inherent in the fixed point techniques?!, has

been reduced but some overdesign is still present.

(f) These techniques are applicable to the design of a reconfi-
urable aircraft with surface failures?®.

The reader is urged, in performing a QFT design, to constantly refer to
Chap. VII and to Appendix A.
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Chapter VI MIMO System With External Disturbance Inputs”
vI.1 Introduction

Previous chapters have dealt with MIMO tracking control systems
with no external disturbances being applied to the plant. This chapter
considers the analysis and design of a MIMO external disturbance rejec-
tion control system. The literature has not thoroughly treated this
disturbance rejection problem. The material in this chapter is
extracted from an AFIT Master's thesis” dealing with the air-to-air
aerial refueling flight control problen. Although this chapter
addresses the specific aerial refueling problem, the design procedures
can be applied to other MIMO external disturbance problens.

VI.1.1 Aerial Refueling Background

The United States Air Force (USAF) maintains a fleet of large
cargo/transport aircraft. Refueling these aircraft during flight
provides unlimited range of operation for this fleet of aircraft.
However, long flights and multiple air-to-air refuelings can seriously
strain and fatigue the pilot, decreasing flight safety, and extending
recovery time between missions. Hence, automatic control of the
receiving aircraft during aerial refueling operations is most

beneficial.

Cargo/transport aircraft are generally large and have high moments
of inertia. Piloting a large, high inertia aircraft during air-to=-air
refueling requires intense concentration. The pilot must maintain a
very precise position relative to the tanker. He/she maintains position
visually, applying the appropriate control inputs when changes in
position occur. The pilot must compensate for changes in aircraft
dynamics due to taking on fuel, specifically, movements in center-of-
gravity and changes in the moments of inertia I, and I. Besides
dynamic changes, the pilot must contend with maintaining position in the
presence of wind gusts. Since these aircraft can take on large amounts
of fuel, up to 250,000 pounds, air-to-air refueling can take up to 30
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minutes. Compound this over long flights and multiple refuelings, and
"the pilot's fatigue level increases and can reach an unsafe level.
This could endanger the flight crew, and possibly impact USAF's

capability to perform its mission.

One way to ease the pilot workload is to implement an automatic
flight control system (AFCS) for air-to-air refueling. The AFCS needs
to be able to maintain a precise position of the receiving aircraft
(receiver) relative to the tanker in the presence of such disturbances
as wind gusts, and in the changes of mass and moments of inertia. This
AFCS is designed to precisely regulate position relative to the tanker
by applying the control synthesis techniques of Quantitative Feedback
Theory (QFT). For the regulation problem, a MIMO QFT design method is
developed to address the rejection of the disturbances entering the
system at the output.

VI.l.2 Problem Statment

During air-to-air refueling, the receiver aircraft will change
position relative to the tanker. The pilot must pay close attention and
take corrective action to maintain position. Excessive changes in
position will disconnect the refueling boom from the receiver. An AFCS
must be designed to regulate the receiver's position, thus reducing the
pilot workload and fatigue factor. By using MIMO QFT, an AFCS is
designed that operates throughout the range of the changing aircraft
dynamics and rejects disturbances including those at the output.’

VI.1.3 Assumptions
The following assumptions are made:
® Only the desired outputs are of interest for final performance.

® Position of the receiver aircraft relative to the tanker during

air-to-air refueling can be accurately measured.
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e The CAD packages used, MIMO/QFT, EASY53x, MATRIXx and Mathematica

are adequate for the design process.

The first assumption is required in applying MIMO QFT. The second
assumption is required because no sensors are currently in place to
measure the position of the receiver relative to the tanker. The third
assumption is concerned with the limits of CAD packages and their

numerical robustness.

VvI.1.4 Research Objectives

The research objectives of this chapter are: (1) to utilize the
aircraft models, developed in Reference 77, for the QFT design process
using a published document” containing C-135 cargo aircraft stability
derivatives tables and plots; (2) to present a design for multi-channel
control laws using MIMO QFT for several flight conditions with special
emphasis on aircraft center-of-gravity and weight changes; (3) to
simulate the design for linear and nonlinear performance on MATRIXx, and
nonlinear performance on EASY5x; (4) to evaluate the new control law;
and (5) to validate the MIMO QFT design with disturbances at the output.

VI.1.5 Scope

This chapter applies the MIMO QFT technique to the design of an
AFCS regulator for the automatic maintenance of the three-dimensional
separation (%, y, and z) of a receiver aircraft relative to a tanker.
The AFCS controls the receiver and is independent of the tanker in as
much as the tanker is used as the point of reference. MIMO QFT design
techniques are developed for disturbances at the system output. The
MIMO/QFT CAD package (see Chapter VIII) is utilized to achieve this
design. The AFCS is designed to reject disturbances at the x, y, and 2
outputs in order to keep the receiver aircraft in a volume specified as
the area of boom operation”. Models are developed for disturbances due
to wind gusts and received fuel. The MIMO QFT plant is the bare-
aircraft model augmented by a typical Mach-hold, altitude-hold, wing-
leveler autopilot. QFT compensators control the reference signal of the
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autopilot to maintain "formation" during air-to-air refueling. The
control system is simulated for linear performance in MATRIXx. A full

six-degree-of-freedom nonlinear simulation is performed in EASYS5x.

Vl.1.6 Methodology

The design approach requires six steps:

® Generate linear time-invariant (LTI) state-space models of the

aircraft for different weights and center of gravity.

¢ Implement a Mach-hold, altitude-hold, wing leveler autopilot
that operates for all aircraft models.

® Model the disturbance due to wind gusts and refueling.
® Design the AFCS using QFT.

e Simulate the design on MATRIXx and EASY5x to validate the AFCS

design.

V1i.1.7 oOverview of Chapter

Section VI.2 discusses how the external disturbances are incor-
porated into the 6 DOF aircraft equations. The MIMO QFT mathematical
expressions are reformulated based upon these modified aircraft
equations. The air-to-air refueling AFCS concept is discussed in Sec.
VI.3. The AFCS design process is shown in Sec. VI.4 followed by Sec.

VI.5 which presents the linear and nonlinear simulations.

vVI.2 Air-to-Air Refueling FCS Design Concept

The aircraft (A/C) modeled in this chapter is the cargo variant of the C-135 class aircraft (C-
135B). This A/C is chosen because of the availability of the aerodynamic data™. This chapter
describes the modeling of the C-135B. A Mach-hold, altitude hold, and wing-leveler autopilot is
included in the C-135B model’. Wind gusts and fuel transfer disturbance models are developed in this
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chapter, as well as the AFCS concept.
V1.2.1 C-135B Modeling

EASYS5x is used to develop the state-space six-degrees-of-freedom bare (uncontrolled) A/C model.
EASY5x is a computer aided design (CAD) tool written by Boeing Computer Services used to model,
simulate, and analyze dynamic systems. The user need only provide A/C stability derivatives, flight
conditions, and desired input/outputs. Sixteen bare A/C plants are developed to account for the
uncertainty of the C-135B during air-to-air refueling. The 16 models are based on two different
coefficients of lift, C, = 0.2, 0.6, for eight different A/C weights. The Mach 0.69 at 28,500 feet flight
condition is considered. These discrete values are selected based on the availability of data, normal
refueling speed and altitude, and represent weights ranging from empty/low fuel to loaded/full fuel A/C.
Typically, during air-to-air refueling, the C-135B will have a C, between 0.27 and 0.457. Therefore,
the 16 plant models envelop the structured uncertainty of the C-135B during air-to-air refueling.

The six-degrees-of-freedom state-space models, generated by EASYS5x, are loaded into MATRIX,.
MATRIX, is used to design the autopilot using root-locus design techniques. The autopilot is designed
to control all 16 plant cases. The bare aircraft and autopilot are shown in Fig. VI.1. An autopilot is
used for two reasons: (1) autopilots reduce the high frequency cutoff of the aircraft, and (2) all aircraft
have autopilots. Lowering the cutoff frequency of the aircraft reduces high frequency parameter
uncertainty which in turn reduces the size of the QFT templates. Since autopilots are available, using
it in the QFT design eliminates duplication of a control system to provide input to the bare aircraft,
reducing cost and overhead. The inputs to the autopilot are thrust, elevator, aileron, and rudder
commands. The outputs are z-position (altitude), x-position, and y-position in a local inertial reference
frame where x is positive out the nose of the aircraft, y out the right wing, and altitude is positive up.
The three outputs frame of reference is translated from the aircraft center of gravity (cg) to the

approximate location of the air-to-air refueling receptacle on the top of the aircraft.
The Mach hold command input is used to control the x position, altitude hold controls altitude, and

the rudder command is used to control the y position. Mach and altitude are self evident, rudder is

chosen over aileron because the rudder does not roll the aircraft. By using the rudder for the QFT
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controller, good performance is obtained while leaving the aileron controller to handle wing leveling.

V1.2.2 Disturbance Modeling

Disturbance models are generated by developing augmented state-space models of the aircraft in the
presence of wind gusts and fuel transfer inputs. The development in Chapter 3 of Reference 77, based
upon external disturbance inputs represented by the vector d, considers three disturbance components:
pitch plane wind induced disturbance Iy, lateral channel wind induced disturbance I',;, and refueling
disturbance I';. Total disturbance modeled is

Fd= Tpadum * Tl + Ty (VI.1)

where I, and I',; augment the state-space equation containing the states that identify pitch plane flight
behavior. In the same manner, T, augments the lateral channel states. The state-space equation now

takes on the form

Yy
L 4

Al!i‘lud:d .l Throttle Z T e —>
Mach_, !_ !_ Elevator | BARE F

Loy +
Aileron Aileron <] & x
cissBlE— > 1 2 [
Rudder o 2
y y
PSI > 3

Fig. VI.1 C-135B bare aircraft with autopilot.
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g:ég* Bu+Td (VI.2)

Note, as the disturbances are applied to the bare aircraft, they enter into the inner most loop, around

which the autopilots, and later, the QFT loops are closed.

V1.3 Plant and Disturbance Matrices

—

Based on zero initial conditions, then from Eq. (VI.2)

sX=AxX+ Bu+Trad (VI.3)
x= [sI- Al"'Bu+ [sI- A]'rd (VI.4)

y = Cx = C[sI - A]"'Bu + C[sI - Ay'rd
= P(s)u + P,(s)d

(VI.S5)

where

P(s)=cC[sI-A]!'B
(VI.6)
P,(s) = Cc[sI-Al'T = {p,}

and where the plant model Py is partitioned into the two matrices P(s) and Py(s), P(s) = P.(s) for a
square plant matrix P(s), and the matrix P,(s) models the transmission from the external disturbance
inputs to the output of Pr. If P(s) is not a square matrix then a weighting matrix W(s) must be used
to yield P,(s) = P(s)W. Equation (V1.5) is represented in Fig. VI.2. Thus the QFT formulation of
Sec. VI. 5 is applicable for this problem.

V1.4 Control Problem Approach

The tanker’s position is assumed fixed and hence the receiver aircraft’s position is measured from

this frame of reference. In this approach the control problem can be viewed as a formation flying
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Fig. V.2 QFT controller with output external disturbance.

problem. The receiver maintains the total obligation of regulating its position. The tanker is free to
change course, altitude, and velocity while the receiver compensates for these changes and maintains
relative position. Equations are developed that identify perturbations from the set position. These
perturbations are viewed as disturbances by the receiver. The perturbations are caused by wind gusts
and disturbances due to refueling. Other, unmodeled, disturbances may include the tanker changing
course. The control problem’s goal is to minimize the perturbations to be within a specified volume of
space where the refueling boom can operate. Normal boom operating position and length defines this

volume.

The KC-135 tanker refueling boom has the following operational constraints: (1) nominal boom
operation position is 30 degrees down from horizontal, (2) the boom can move as much as four degrees
up and down from normal position and continue delivering fuel, (3) it can move as much as ten degrees
up and down from normal position and maintain its connection to the receiver, but cannot deliver fuel,
(4) horizontal movement is limited to 10 degrees left and right while maintaining fuel flow, (5) the
disconnect limit horizontally is 15 degrees left and right, (6) nominal boom length is 477.5 inches (39.8
ft), (7) it can expand or constrict 13.5 inches and maintain refueling, (8) it can expand or constrict as
much as 73.5 inches and maintain contact but not refueling”. These dimensions provide a maximum
perturbation from nominal boom position of approximateiy 2.85 feet up or down, 7 feet left or right,
in order to maintain fuel flow. In order to maintain connection, the maximum perturbation can be 7.5

feet up or down, and 11.5 feet left or right.
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Hinge Point (Tanker)

Y %

into page
Fig. VI.3 Control problem geometry.

Using the tanker as the point of reference, the relationship in Fig. V1.3 can be used to develop the

X Receptacle (Receiver)

equations required to define the regulation control problem. R is the nominal boom length measured
from the boom hinge point on the tanker. Z is the vertical distance between the boom hinge point and
receiver aircraft’s refueling receptacle. X is the horizontal distance between these same points. Y

measures the distance between the center line of the boom hinge point and receiver receptacle.

The following equations are derived

R2= X2+ Y2+ ZZ (VI¢7)

where

(VI.8)

N X
Wounwn
L
+ 4+ +
NN X R

which are the sums of the nominal positions (overbar terms) and perturbations (lower case terms).

Substituting Eq. (VI.8) into Eq. (V1.7) and squaring the terms, yields

R2+ 2rR + r2= X2+ 2xX + x>+ Y2+ 2yY + y?+ 2%+ 222 + 2? (VI.9)
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Sincer, x,y,z << R, X, Y, Z respectively, Eq. (V1.9) is approximated as

R+ 2rR= X?+ 2xX+ Y2+ 2y-'f+ 22+ 227 (VI.10)

Taking the derivative with respect to time where the overbar terms are constant yields

rAr _yxdx, ydy, K 7dz (VI.11)

r=—§—x+ g.—y+—_£z=0 (VI.12)
R R R
defining
X= Xp- Xp
Y= Y- Yz T - Tanker (VI.13)

R- Receiver
Z= 2.~ 24

Thus, r = 0 if and only if, x = y = z = 0. Therefore, the control problem is to design the
compensator G of Fig. VI.4 that will satisfy Eqs. (VI.12) and (VI.13).

Xr
Y.
T T
Zr
xcmd= o
yemd= 0
zcmd_ o
X -
xcmd + x > R +
~ Y - I+
ycmd /~ G “——» R R
z__ 5 2g — 1+

Fig. VI.4 Control problem.
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VI.5 MIMO QFT with External Output Disturbance

Output disturbance rejection is the primary design criterion in this chapter. Previous discussions
of MIMO QFT did not consider external disturbance in the calculation of disturbance rejec-tion bounds.
Therefore, equations including the external disturbance are developed in this chapter. The following
development quantifies external uncertain disturbances. Figure VI.2 represents an mxm MIMO closed-
loop system in which F(s), G(s), P(s), and P,(s) are mxm matrices. ®(s) = {P(s)} and @ 4(5) = {P(s)}
are sets of matrices due to plant and disturbance uncertainties respectively. The objective is to find
a suitable mapping that permits the analysis and synthesis of a MIMO control system by a set of

equivalent MISO control systems.

From Fig. V1.2, the following equations are written
y=P(s)u+ P,(s)d_, u= G(s)v v=r-Yy (VI.14)
For the regulator case with zero tracking input

r =10, 0, of (VI.15)
From Egs. (VI.14) and (VI.15,) where henceforth the (s) is dropped in the continuing development,
v=-Y u= - Gy (VI.16)

which yields
y = - PGy + Pd_, (VI.17)

Equation (V1.17) is rearranged to yield:

-
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y = [I + PG]'P 4,

(VI.18)

Based upon unit impulse disturbance inputs for d., the system control ratio relating d,,, to y is

Ty = [I + PG]'P,
Premultiply Eq. (VI.19) by [I + PG] yields

[I + PG]T, = B,
Premultiplying both sides of Eq. (VI.20) by P results in

[p1 + 6], = PP,

Let

The m? effective plant transfer functions are formed as

g, = 1 _detP
Y p-y-' adj P;

the Q matrix is then formed as
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Pz‘l Pz‘z
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Bmi1 sz

Pim
Dom

Pmm

(VI.19)

(VI.20)

(VI.21)

(VI.22)

(VI.23)
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9u 912 -~ 9im 1/pn 1/pPp - 1/Pin
0= T T | 1/pn Y/Pn - 1/Pm | (vI.24)
Dmt Imz = Imm 1/Pmt 1/Pmz ~ 1/Pmm

where P = [p,], P? = [p’;] = [l/g;], and Q = [g;] = [1/p";]. Partition the P matrix as follows:
Y y. Y v y

P'=(p/ 1=01/g; 1 =A+B (VI.25)

where A is the diagonal part of P! and B is the balance of P*'. Thus ; = 1/g; = P b; =0, and

b; = l/g; = pfori #j. Substituting Eq. (VI.25) into Eq. (V1.21) with G diagonal, results in
[A+B+G]T,=[A+B]F (VI.26)
Rearranging Eq. (V1.26) produces
T,=(A+G]'[ AP, + BP, - BT, ] = {t,} (VI.27)

This equation defines the desired fixed point mapping, where each of the m? matrix elements on
the right side of Eq. (V1.27) are interpreted as MISO problems. Proof of the fact that the design of
each MISO system yields a satiéfactory MIMO design is based on the Schauder fixed point theorem ..

The theorem defines a mapping Y(To

Y(T,) = [ A+G]1'[ AP, + BP, - BT, ] (VI.28)

where each member of T, is from the acceptable set &y. If this mapping has a fixed point, i.e.,

T, € &, then this T, is a solution of Eq. (VI.27).
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Fig. VI.5 3x3 MISO Equivalent Loops for External Output
Disturbance (r = 0).

Figure VL.5 shows the effective MISO loops resulting from a 3x3 system. Since A and G in Egq.

(V1.27)) are diagonal, the (1,1) element on the right side of Eq. (VI.28) for the 3x3 case, for a unit

impulse input, provides the output

t t
v, = dy Pa, | Pa Pa, _ B T (VI.29)
u 1 +99y | 9u 912 di3 9 93 ‘

Equation (VI.29) corresponds precisely to the first structure in Fig. VI.5. Similarly, each of the nine

structures in this figure corresponds to one of the elements of Y(T,) of Eq. (VI.28). The control ratios

for the external disturbance inputs d,,, and the corresponding outputs y; for each feedback loop of Eq.

(V1.28) have the form
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Yi = wi( d,)
where w; = q;/(1 + ggq;) and
d‘v = (dm)y - Cy
‘ SR DR

external disturbances, i.e.:

(doe) 15 = ZX: Payy
ext’/ 13 P ik

m
cis = )
k# i 9k

ratio:
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For this development, the equations for the case of a 2x2 MIMO system are presented.

(VI.30)

number of disturbance inputs
dimension of square MIMO systen

(V1.31)

Thus, Eq. (V1.31), the interaction term, not only contains the cross-coupling interaction but also the

(VI.32)

where (d.); represents the external disturbance effects and c; represents the cross-coupling effects.

Additiopal equations, quantifying both the external disturbance (d.,); and the internal cross-coupling
effects c;, are derived to utilize the improved method QFT design technique. These equations are used

to define the disturbance bounds for subsequent loops based on the completed design of a single loop.

¢ From Eq. (VI.30) and for the 1-2 loop case, which is the output of loop 1 due to disturbance input

2, including the cross-coupling terms from loop 2, yields, for unit impulse inputs, the following control




t=y =W(d)= 9n pd‘z+3‘2—.t;‘n
% 2 HY T 1+L |9y d;, d;,

Substituting in for ty

dy Py Py, 954,

2 o+

- T+ L, | an d;, (1 + Ly)dyp,

ty

¢ = _9u Py (1 + L))qp, + Pg (1 + L)y — dpd;yd,
T+, (1 + L) q,9,

(VI.33)

(VI.34)

(VL.35)

P p t
(1 +L,) (Pg, 912 + Pg, 1) ~ 99 {q:u + a:'z - qdn]
£ = 1 2 21
* (1+L) 1+ Lap

rearranging, and substituting in for 4. yields

Ad»911Pg dnd;t
(1 +L) (pduqu + pdnqll) - Tz - dnPqy, + —-Z—ZEIZI—E‘E
t = 1
G (1 +L)(1 +L)a,

_ (1 + L) (Pg, Q12 * Pa, Q1) 921 ~ 991iPa, ~ 9Py, + 909ty
“ (1 + L)) (1 + L) dpdy
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where i, = Q11Q»/dndp- Solving for t, yields

(1 + L) (Pen ¥ Py, d11)
te, ((1 + L) (1 +Ly)) = a0 (VI.39)

_ d11Pa,
d;;

= YPy, * Ti2tq,

ty ((1 +Ly) (1 + L) - Y) =

q
(1 + Ly aﬂpdn + (1 + L))Py, — —Pa, ~ TPy,
12

(V1.40)

dy -
.. th_qudn + (1 + L, - )Py, (VI.41)

2 Li(1+L) +1+L, -7

Equation (V1.41) is rearranged as follows:

-+
e . T7L -7 Pa, (VI.42)
L=

. 1+ Li(1 + L)
1+L, -7

From Eq. (V1.42) the effective plant is defined as:

. G (VI.43)
. 1 +L, - 7

Substituting Eq. (V1.43) into Eq. (V1.42), yields:

LPe 9, p
£ - g, (1 + L) da (VI.44)
o=

* 1+ 94,

Thus, in general, for the 2x2 case, the improved method control ratio of the j/ interaction input to

the i® system output is
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LiPy 9,

—_———— + D,
(1 + L VI.45
T 2 ' where i = 1, 2andk#1 ( !

td“ ) 1+g949;

The interaction bounds (the optimal bounds for a pure regulator control system), representing the cross-

coupling and the external disturbance effects, are calculated at a given frequency to satisfy

Lipy 9,
Ga(L + Iy P4
(Bp)y2|t,]| = d 1*9;1;-,- where i =1, 2and k # 1
(V1.46)
or
1 Lo, q; , ]
2] > N e h =1, 2 d k
1+949;|2 B5); | el + Ip) +p; | whereli =1 an #1
(V1.47)

The improved QFT method uses these equations to reduce the overdesign inherent in the original
design process. The order in which loops are designed is important. Any order can be used, but some
orders produce less overdesign (less bandwidth) than others. The last loop designed has the least
amount of overdesign, therefore the most constrained loop is done first by the original method. Then
the design is continued through the remaining loop by the second method. The first loop is then
redesigned using the improved method.

At this point it is important to point out that when the interaction term specification is considered,
the designer must decide how much is to be allocated for the cross-coupling effects and how much for
the external disturbance effects. In other words, the designer can "tune" the external disturbance
rejection specification depending on the nature of the interaction term for a particular loop. For
example, if one loop is only affected by external distrubance, the interaction term specification would
consider external disturbance effects only. But if the loop interaction term is a mix of cross-coupling
and external disturbance, the designer must then "tune" the interaction term specification accordingly.

Since each loop may not exhibit the same interaction characterisitics, interaction term specification
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tuning provides flexibilty in the QFT design process .

.6 AFCS Design

This section applies the QFT design technique to a real-world problem. The intent of this chapter
is to present to the reader a design problem, with as much details as space permits, from the onset of
the specification of the control problem to the verification of the design results by means of a linear and

nonlinear simulations.

=

.6.1 Introduction

|

The details for the QFT AFCS design are now presented. First the disturbance rejection
specification is identified. Next, design of the loop transmissions for all three channels is described.
Previous chapters provide the detailed step-by-step guide for the QFT design process.

V1.6.2 Disturbance Rejection Specification

The primary goal in designing the AFCS system is to regulate the position of the aircraft receiving
fuel relative to the tanker. As discussed in Sec. VL5, any deviation from the nominal set position is
considered a disturbance. Hence a disturbance rejection specification is determined based on modeled
disturbance inputs and the basic QFT design pretense of unit impulse inputs. Since the most severe
disturbance is due to wind, the disturbance specification is "tuned” to the wind input of 10 ft/sec. A
maximum deviation from the nominal set position of 2 feet in any direction is specified which will
confine the receiving aircraft to a volume that permits continued fuel delivery. Therefore the following
disturbance specification is derived. Given an impulse input of magnitude 10 feet/sec, the system
response will deviate no more than 2 ft. Additionally, the system will attenuate to half the maximum
deviation in less than 1 second. Equation (VI.48) identifies the transfer function for the disturbance
rejection specification, and Fig. VI.6 shows the disturbance rejection model response to an 10 ft/sec

impulse input.
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400s
(s +1)(s +5)° (VI.48)

Disturbance rejection model =

An analysis of the Lm plot of the disturbance rejection specification which is superimposed over
the Lm P(s) MISO loop plots (see Fig. VI1.7) reveals” that MISO loops {2,1}, {3,1}, {3,2}, {1,3}, and
{2,3} are below the disturbance specification before compensation is applied.

V1.6.3 Loop Shaping

The order of loop shaping is determined by the amount of cross coupling each MISO loop exerts
on each other. Since channel 2 couples strongly into channel 1 it is designed first. The improved
method is applied to utilize the known g, to recalculate the disturbance bounds for channel 1. Channel
1 is then designed. Channel 3 is designed last since it is completely decoupled and thus a 1x1 SISO

system.

The bandpass of the plants are relatively low, a benefit of the autopilot. In shaping the loops the
overall system bandpass is designed to remain approximately equal to the plant bandpass. This

requirement may require tradeoffs on meeting certain higher frequency bounds.
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Fig. VI.6 Disturbance rejection model response to 10/sec impulse.
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V1.6.4 Channel 2 Loop Design

For channel 2 plant case 2 is chosen to be the nominal loop. Plant 2 is chosen because through
initial design attempts it proved to be the most difficult to shape around the stability contour. A
successful shaping of plant case 2 guarantees stability for all plant cases. Templates, stability and
disturbance boundaries are calculated and composite bounds are formed in the MIMO QFT CAD
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disturbance boundaries are calculated and composite bounds are formed in the MIMO QFT CAD
Package. The channel 2 plants are 360 degrees out of phase between the plants derived from the
aircraft plant with C; = 0.2 and C, = 0.6. This is evident from the 360 degree wide templates and
the stretching of the bounds over 360 degrees. The phase difference does not present a problem as the
MIMO CAD Package is able to accommodate this scenario. Compensator g, poles and zeros are added
to shape the loop. Channel 2 is relatively easy to shape and proved to have the lowest order

compensator, g,.

As shown in Fig. VIL.8, the channel 2 loop easily satisfies all QFT loop shaping requirements for
composite bound and stability contours, guaranteeing a stable design satisfying the disturbance rejection
specification. Fig. VI.9 shows the loop shapes on the NC for all 16 plants. From this figure the 360
degree phase difference in some plants is evident. Though there is a phase difference, each plant
correctly goes around the stability contour indicating a stable design for all plant cases. The following

compensator is designed for this channel:

g, = (s + 0.25) (s + 0.75) (s +1.2) (s + 1.3)
2 s(s + 0.98 + j1) (s + 10) (s + 20) (s + 120)

(VL.49)
VY1.6.5 Channel 1 Loop Design

After g, is designed the improved method (Method 2) is applied using the equations derived in Sec.
VI.5. Utilizing the known structure of g, a more accurate calculation of the cross-coupled disturbance
from the compensated channel 2 to the uncompensated channel 1 is achieved. The disturbance and
hence the composite bounds are generated, based upon Eq. (VI.43). These have smaller magnitude
compared to those obtained by Method 1, thus overdesign is reduced.

For the same reason as in channel 2, the nominal loop for channel 1 is given by plant case 2.
Again, as in channel 2 the templates show a 360 degree phase difference between the two plant cases
of C, = 0.2 and 0.6. But unlike channel 2 there is a magnitude uncertainty evident in the channel 1

templates, see Appendix E in Reference 77. The magnitude uncertainty arises due to the strong

180




n Loop Transmission for Channel 2
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Fig. V1.8 Channel 2 loop shaping P, = plant case 2.

coupling from channel 2 into channel 1, and also from the difference in the effect of wind disturbance
between the 2 classes of aircraft plants based on C.. The plants of C, = 0.6 have a larger wind
induced disturbance as shown in Appendix D of Reference 77. Therefore these plants have not only

more external disturbance, but also larger cross coupling disturbance.
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s-Domain Open Loop Transmissions for Channel 2
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Fig. V1.9 Channel 2 Nichols plot all plant cases.

The loop shaping is more difficult for channel 1. The loop tends to curl at certain frequencies as
shown in Fig. VI.10. The curling causes a large change in phase with little or no change in magnitude.
This type of behavior makes it difficult to shape a loop that is stable, satisfies the composite bound

criteria, and maintains a low system bandpass. The loop for channel 1 is shaped with a compromise
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on the bandpass. A lag-lead compensator is used to "stretch” the low frequency curl. Additional lag-
lead compensators are tried to further “stretch” the curl but caused the loop to increase in magnitude
as the frequency increased. A loop shape is finally achieved that satisfies the lower frequency bounds,
stability, and slightly increases the system bandpass. The channel 1 compensator, g;, has a higher order
than the channel 2 compensator. This is an indicator of the difficulties in achieving a loop shape that

satisfies design criteria.

Open Loop Transmission for Channel 1
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}5/80. 260, 240, -zio. 200 180, -160. -140. -120. 00, 0. -60.
Fig. VI.10 Channel 1 loop shaping P,= plant case 2.

183




The Nichols plot of all 16 plants in Fig. VI.11 shows the uncertainty in the low frequency range
of the plants. Though there is large phase and magnitude differences between the plants the QFT
method is able to achieve a design that satisfies stability and disturbance rejection for all plant cases.
The following compensator is designed for channel 1:

(s +0.3)(s +0.25 + 70.433) (s +3)(s +9)(s +1.14 + 73.747) (s + 20)

G = s(s +2)(s +0.32 + 73.184) (s + 90) (s + 135 + j65.38) (s + 1100)

(V1.50)
s-Domain Open Loop Transmissions for Channel 1
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Fig. ¥I.11 Channel 1 Nichols plot all plant cases.
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VI1.6.6 Channel 3 Loop Design

Channel 3 exhibits none of the channel 1 or channel 2 characteristics. The channel 3 templates have
relatively small phase and magnitude uncertainty. There is no coupling from channels 1 or 2 into

channel 3. The external disturbances have similar effects on channel 3 for all plant cases.

The lack of cross coupling disturbance and relatively certain external disturbance is evident in Fig.
VL.12 where the bounds collapse around the stability contour. The channel 3 loop has a tendency to
curl up as the frequency increases. The main difficulty is to add compensation to shape the loop around
the bounds and stability contour at +180 degrees and then add further compensation to keep the loop
from penetrating the stability region at -180 degrees. To achieve stability the very low frequency
bounds are penetrated. This tradeoff is considered acceptable since channel 3, y position has the largest
margin of disturbance allowed, 7.5 feet, as detailed in Sec. VI.4.

The Nichols plot of Fig. VI.13 shows a very tight grouping of all plant cases. Again, further
evidence of relatively small uncertainty in channel 3. Notice the large change in phase with no
decrease in magnitude. This is deemed acceptable since it occurs below the zero dB line at frequencies

below the cutoff. The transfer function for the channel 3 compensator is:

g, = (s +0.05) (s +0.1)(s +0.2) (s +0.6)(s+1.5% 72.6)(s+5)(s"
3 S(s + 0.00025) (s + 0.6 £ j1.91) (s + 10) (s + 35 % j35.707) (s + 37.5 :

(VL.51)

VL.6.7 Closed Loop Lm Plots

The overall equivalent MISO system closed loop Lm plots are shown in Fig. VI1.14. From these
plots you can easily see that disturbance rejection specification is met for all MISO loops except for as
noted in the low frequency portion of the MISO loop {3,3}. The closed loop MISO plots of Fig. VI.14

are an excellent indicator of success in meeting the design specification.
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Open Loop Transmission for Channel 3
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Fig. VI.12 Channel 3 loop shaping P,= plant case 2.
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s-Domain Open Loop Transmissions for Channel 3
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.7 Air-to-Air Refueling Simulations

In this section the compensators designed in the previous sections are installed in the AFCS and
simulations are run to analyze their performance. Linear simulations are run for all plant cases in
MATRIX,. Nonlinear simulations are for two plant cases, one for each C; = 0.2 and 0.6, are
performed in EASY5x.

188




V1.7.1 Linear Simulations

Linear simulation are performed in MATRIXy with the modeled external disturbances forcing the
system to deflect from the set point. The simulations are executed in the presence of all external
disturbances simultaneously. The results of the linear separation for channel 1 (Z separation)
demonstrate excellent results with very little perturbation from the set point. Figure VI.15 presents the
channel 1 response. The plots demonstrate two distinct responses corresponding to the aircraft lift
coefficient C,. The aircraft with C; = 0.2 show a maximum perturbation of approximately 0.0025 feet.
Also the response dampens faster for the aircraft modeled with C; = 0.2. The aircraft with C, = 0.6

deflected to a maximum value of approximately 0.008 feet with slower dampening.
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Fig. Y115 Linear simulation -Z separation deflections all plant cases.
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The channel 2 (X separation) linear simulation demonstrates similar characteristics for response
based on C;. Again, excellent rejection of external disturbance is achieved as shown in Fig. VI.16.
C. = 0.2 aircraft have a maximum deflection of approximately 0.025 feet, while C. = 0.6 aircraft
deflect approximately 0.425 feet from the set point. Recall that the aircraft with C. = 0.6 have a larger

uncompensated perturbation due to external wind disturbance.

Channel 3 (Y separation) has the largest perturbation from the set point in the linear simulation, see
Fig. VI.17. The maximum perturbation in channel 3 is approximately 1.9 feet. Though considerably
larger than channels 1 and 2, the channel 3 perturbation remains within the design specification.

VL.7.2 Nonlinear Simulations

The nonlinear simulation are performed in EASY5x. EASY5x has a Dryden wind gust model

preprogrammed in the CAD package. The Dryden wind gust model is used in the nonlinear simulations
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Fig. V.16 Linear simulation-X position deflection all plant cases.
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Fig. YI.17 Linear simulation - Y position deflection all plant cases.

versus the disturbance model developed in Secs. VI.2.2 and VI.4. Two nonlinear simulations are run.
One representing an aircraft with C, = 0.2 and the second for C; = 0.6. The nonlinear simulations
require considerable time to setup and perform, therefore, time limitation prevented performing a

nonlinear simulating for each plant case.

The nonlinear simulations demonstrate the same excellent results that are achieved in the linear
simulation. The nonlinear results are consistent with the linear results, namely very small perturbations
for channels 1 and 2, with a larger deflection in channel 3, are recorder as shown in Figs. VI.18 and

VI1.20. As in the linear simulations, the nonlinear simulations are within the design specifications.
Also presented in the nonlinear simulation plots, Figs. VI.19 and VI.21, are the control surface and

thrust response of the autopilot. The aileron, rudder, and elevator responses are well within the

physical capability of these devices. On the other hand the thrust requirements are probably beyond
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thrust response of the autopilot.

The aileron, rudder, and elevator responses are well within the

physical capability of these devices. On the other hand the thrust requirements are probably beyond

engine response capability. The engine response is most likely due to the autopilot design. The

autopilot is a "text book" design and is not very sophisticated. A QFT design using the actual C-135B

autopilot can probably achieve similar results without extreme engine response requirements.
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VI.8 Summary

This chapter presents the development of the improved QFT method to include the effects of
external input disturbances on the system’s outputs. Equations to calculate the new optimal bounds,
which is the interaction bound for a pure regulator system for the improved method, are presented.
This results of this development are applied to the design of a real-world problem: the AFCS. Each
loop shaping is detailed, covering the particular difficulties in shaping the loops for each channel. Also
the inherent nature of QFT’s ability in handling large plant uncertainties is discussed. Finally the Lm
of closed loop MISO system is shown, indicating a successful design given the tradeoffs made.

The compensators designed in this chapter are integrated into the air-to-air refueling AFCS. Linear
and nonlinear simulations are performed with excellent results. The system response is within design
specification. The QFT design process worked extremely well in designing the AFCS in the presence

of external output disturbance.
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Chapter VII Now the "Practicing Engineer Takes Over"

VII.1 Introduction

The scientific method uses mathematical methods to gain insights
into, to generalize, and to expand the state-of-the-art, in many areas
of science and technology. Quite often this requires the proof of
theorems, corollaries, and lemmas. At this stage, in general, the
researcher (1) is not concerned with whether his or her efforts will
result in the solution of "real world problems," and (2) applies linear
analysis and synthesis techniques, although most of the real world
problems are nonlinear. The scientific method is necessary in order for
the researcher to be able "to see the trees from the forest," and thus
to be able to achieve positive results.

Once the scientific approach has successfully advanced the state-
of-the-art, and where applicable, the engineer must take over and apply
the new results to real world problems. The engineer is at the
"interface" of the real world, and the body of knowledge and theoretical

results available in the technical literature.

Isaac M. Horowitz applied the scientific method in the development
of his Quantative Feedback Theory (QFT) approach to the engineering
design of robust control systems (see articles in Reference R.1).
Professors F. Bailey, 0. D. I. Nwokah, et al (see articles in Reference
R.2) have used the scientific method to enhance the mathematical rigor
of the QFT technique, in order to help the engineer to bridge the
"interface" gap. The goal of these researchers is to establish
theorems, corollaries, and lemmas that can tell the designer at the
onset whether, given the required performance specifications, and in the
face of parametric uncertainty, is a QFT solution feasible. This body
of knowledge must be coupled with "the body of engineering knowledge"
pertaining to the application, when dealing with nonlinear systems and
real world problems. This requires that the engineer have a good
understanding of the physical characteristics of the plant to be
controlled.
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In conclusion, the control system design task is a multi-stage
process which entails many steps, say from A to Z. Mathematics is most
helpful in taking the engineer through some of these steps, say from P
to S. It however behooves the engineer to make the required modelling
assumptions, hypotheses, and simplifications that are needed for him or
her to proceed from A to O, so that the mathematical problem is
tractable and the existing theory can be applied. Finally, steps T to
Z entail extensive simulations where the validity of the model is
verified, the implementation issues are addressed, and the design is
validated. 1In Reference 118 an honest rendition of a flight control

system design using QFT is presented.

VII.2 Transparency of OFT

The elements resulting from the application of the scientific
method which provide the "transparency" of the QFT design technique and
that enhance its ability to solve real world problems are:

1. Template =-- The size of the template (width and height) tells
the engineer at the onset of the design process whether a fixed
compensator 6 can be synthesized that will yield the desired system
performance in the face of the prevailing structured uncertainty.
If only the template's height is the problem then the engineer
needs to employ straight gain scheduling. When control effector
failures need to be accommodated, the width of template can become
excessive and a successful design won't be possible. In this
situation the designer needs to eliminate the effector failure
case(s), in order to reduce the width of the template. Section
IX.5.4 provides an example of how an engineer utilizes his or her
knowledge of plant parameters, and performance characteristics and
specifications, to select a set of J plants that ensures a template
shape which represents as accurately as possible the extent of
plant parameter uncertainty.

2. Phase margin frequency =-- In order to ensure that the value of
the specfied phase margin frequency w, is not exceeded by any of
the plants in the set then, when all J plants in @ are stable,
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select the nominal plant p, to be the plant lying at the "top"
vertex of the template. This assumes that this plant always lies,
for all template frequencies, at the top of the templates. 1In the
event that one or more plants in the set @ are unstable, then the
design engineer must select as the nominal plant the plant p, that
has the highest degree of instability (the plant whose unstable
pole lies furthest to the right in the s-plane) as the "worst case
plant." This rule for the selection of the nominal plant will
facilitate the achievement of the specified value of w,. Also, see
the discussion on page 86. It is advisable that one of the
templates, for each loop, be obtained at the respective BW(L)
frequency.

3. Signal flow graph (SFG For y = Pu = PWu -- Figure VII.1
represents a MIMO QFT control system'structure. Having the SFG for
the portion of Fig. VII.1 that represents P, can be helpful in the
initial selection of the values of w; and modifying some of these
values during the simulation phase of the design process. This
selection of values, etc, can be further enhanced by the engineer's
firm understanding of the interrelationship of the plant outputs
with the inputs to the W matrix.
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Fig. YI[.1 MIMO QFT Control Structure, Block Diagram.

4. Minimum order compensator (controller) G -- Why are high-order

compensators unacceptable? The implementation of an m-order
compensator in a digital flight control system (FCS) yields an m-

197




order discrete-time dynamical system. The latter is equivalent to
a first order dynamical system with m-time delays. Hence, during
the first m-1 time instants the input has a somewhat limited effect
on the output, for the output is partially determined by the m
initial conditions. Thus, the control action is delaved.

Example =--- Consider a 60 Hz FCS sampling rate and a 20th
order H, compensator. The FCS's time delay is 20/60 = 1/3 s
which is unacceptable. In general, the time delay caused by

an m-order controller is m/60 s.

Another factor that must be considered in maintaining low-
order controllers is that on board flight control computers have
limited capacity due to other non-control related computing
requirements. As a rule, about 30% of the computer capacity is
allocated to the FCS and 70% for non FCS requirements.

To achieve this desideratum some designers, or design methods,
have recourse to plant P, and in-turn P,, "doctoring" or "padding"
by inserting additional poles and/or zeros into P. This results in
an "augmented" plant matrix P, which these designers base their

design on in order to achieve a so-called "minimum-order" G.

In QFT, in order to achieve the minimum size compensator G,
during loop shaping, the poles and zeros of the nomimal plant g,
are put to good use in synthesizing a satisfactory loop shaping

transfer function L. Doing so yields the minimum-order

uo

conpensator g; = L; /.-

Some or all of these elements, or comparable ones, are not available in
other, optimization based, multivariable control system design tech-

niques. This minimizes their ability to achieve, in a relatively “short
design time," a design that meets all the performance specifications

that are specified at the onset of the initial design effort.

Body of Engineering OFT Knowledge

Through the many years of applying the QFT robust control design
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technique to many real world nonlinear problems, the following

Engineering Lemmas have evolved:

| . E.L.-1 Weighting Matrix -- When a weighting matrix W = {w;} is
required to achieve a square equivalent plant, it is desired to
know at the onset if it is possible to achieve m.p. g;'s by the
’ proper selection of the w; elements. Now, m.p. Qj plants are most
deéirable for they allow the full explotation of the "benefits of
feedback," i.e., high gain. It turns out that one can apply the
Binet-Cauchy theorem (see Chap V) to determine if m.p. g;'s are
possible. Also, it may be desireable to obtain complete decoupling

for the nominal plant case, i.e.,

pll 0o - 0
p = 9 Paz ? - PW (VII.1)

ed.llf

Although for the non-nominal plants complete decoupling, in
general, will not occur, the degree of decoupling will have been
enhanced. This greatly facilitates the QFT design process, for
less attention needs to be given to cross-coupling effects (cy)
rejection. Method 1 is then more readily applicable, with the

additional benefit of reduced closed-loop BW.

E.L.2 n.m.p. g;'s -- For g;'s that are n.m.p. one must determine
if the location of the RHP zero(s) is in a region which will not
present a problem for the real-world design problem being
considered. For manual flight control systems,, if a RHP zero
happens to be "close" to the origin, this is not necessary
deleterious since the pilot inputs a new command before its effect
¢ is noticeable; in other words, it is assumed that the unstable pole
is outside the closed loop system's lower bandwidth. If this RHP
zero is "far out" to the right, it is outside the bandwidth of
’ concern in manual control and it does not present a problem. For

these cases a satisfactory QFT design may be achievable.
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E.L.3 Templates -- The adage "a picture is worth a thousand
words" applies to the preliminary task of determining if a robust
control solution exists, bearing in mind the need to satisfy track-
ing specifications, external disturbance and cross-coupling effects
rejection, and satisfying the stability bounds. If the theorens,
corollaries, and/or lemmas pertaining to these bounds, obtained by
the scientific method, reveal that no loop shaping solution exists
then one must be attuned to stepping back and doing a "trade-off"
in which some specifications are relaxed in order to achieve a
solution, or one must be willing to live with a degree of gain
scheduling. Thus, a graphical analysis can reveal the following:

(a) The maximum template height, in dB, is too large, forcing
one or more (tracking, cross-coupling rejection, external
disturbance rejection, or stability) bound or the composite
bound violation. One can then decide if gain scheduling is
required and is feasible in order to yield a design that
satisfies all the bounds.

(b) The situation where the templates are too "wide" (the
magnitude of phase angle width) thus prohibiting a QFT solu-
tion or a solution by any other multivariable design technique
(see Sec. V.3). This 1is especially true for real-world
control problems that involve control effector failures
accommodation. In these design problems, generally, the worst
failure case is the culprit in generating this large "angle
width." Thus, in order to achieve a solution one needs to
relax the requirement that the "worst failure case" be accommo
dated. Naturally, when this situation arises, it is necessary
to stipulate for what failure case or cases a successful
design is achievable. In determining "reasonable failure
cases" that can be accommodated by robust (not adaptive)
control -- one must consider if 10%, 25%, 50%, 80% failure
still permits enough control authority! This % of failure can
only be determined by a person who is knowledgeable of the
physical plant to be controlled. In general, knowledge of the
plant (application) "is king" when it comes to the design of
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a feedback compensator or controller for the said plant.

(¢) In Sec. IX.5.4 it is shown how the engineer's insight
into the plant's physics helps to efficiently determine the
boundary of the template (where the parametric uncertainty is

represented) .

As stated in Sec. IV.6, if all the p;'s of P do not have the same
value of \ (excess of poles over zeros) then as w = © the templates
may not become straight lines. A possible method of reducing the
size of the templates is given by E.L.8.

E.L.4 Design Techniques -- No matter what design method one uses,
performance specifications must be realistic and commensurate with
the real world plant being controlled. Situations have occurred
where the conclusion was reached that no acceptable design was
possible. For these situations when one "stepped back" and asked
the pertinent gquestion "was something demanded that this plant
physically cannot deliver regardless of the control design
technique?", it was determined that some or all of the prescribed

performance specifications were unrealistic.

E.L.5 OFT Method 2 -- By arbitrarily picking the wrong order of
the loops to be designed (loop closures) by Method Two, can result
in the nonexistence of a solution due to the chosen order of clo-
sures. This may occur if the solution process is based on satisfy-
ing an upper limit of the phase margin frequency w, for each loop.
The proper order of the loops to be designed by Method Two, entails
picking the loops in the order of increasing values of the desired
ws; i.e., first close loop 1, then loop 2, etc where [¢, < L¢, < L¢;
< ... . Indeed, by Method Two it is known that the «, of the suc-
ceeding designed loop is larger than the previously designed loops.

E.L.6 Minimum order Compensator (Controller) -- In order to ensure

the smallest possible order compensator/controller, one starts the
loop shaping process by using the loop's nominal plant L, = q;;,, and
then zeros and poles are successively added in order to obtain the
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required loop shape, resulting in:

I = Lo (s - z) ~ (s - z) (VII.2)

° (s - p,)(s - p,)

Finally, the compensator is obtained from g, = L,/q;,. Thus, the
nominal plant's poles and zeros are being used to shape the loop.
This insures that the ensuing compensator/controller is of the

lowest order, which is highly desirable.

E.L.7 Minimum Compensator Gain =-- To minimize the effects of
noise, satuation, etc., it is desireable to minimize the amount of
gain required in each loop i, while at the same time meet the
performance specifications in the face of the given structured
uncertainty. To achieve this goal, a control system designer, with
a good understanding of the Nichols Chart and a good interactive
QFT CAD package, can use his "engineering talent" to make use of
the "dips" in the composite B,(Jjw). The designer by shaping L, to
pass through these dips, where feasible, can ensure achieving the
minimum compensator gain that is realistically possible. To
achieve this by an automatic loop shaping routine may be difficult.

E.L.8 Basic mxm Plant P Preconditioning ~- When appropriate,

utilize unity feedback loops for the mxm MIMO plant P which will
yield an mxm preconditioned plant matrix P,. The templates SPp(Jjw;),
in general can be smaller in size than the templates $P(Jjw). This
template reduction size is predicted by performing a sensitivity
analysis (see Sec. 14.2 of Ref. 15). The QFT design is performed
utilizing the preconditioned matrix P,. This concept has been used

in a number of MIMO QFT designs®®”"®!2 (see Sec. VI.2.1).

E.L.9 Nominal Plant Determination =-- It is easy to determine the
phase margin angle v, the gain margin, and the phase margin fre-
quecy w, of a feedback control system using the NC. Thus, QFT
affords the robust establishment of these FOM. Indeed, by choosing
the nominal plant: (a) to correspond to the maximum dB plant on the

w;; = BW(L;) template ensures that w, < BW(I;) for all plants; (b) for
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the achievement of a_ robustly gquaranteed gain margin is easily

accomplished provided the nominal plant is uniformly the maximum dB
plant for all templates; and (c) which is the "left-most" plant on
all templates ensures that the desired y is robustly achieved.

E.L. 10 Simulation Run Time -- In many real-world manual feedback

linear or nonlinear control problems, the goodness of the design is
judged on a prespecified planning time horizon beyond which the
performance is less important since the human operator will inject
new inputs to the system. For example, in manual flight control
the time horizon is determined by the aircraft's short period
dymanics, e.g., 5 seconds and there is no interest in the long time
intervals commensurate with the slow phugoid dynamics.

E.L. 11 Asymptotic Results -- Asymptotic results by mathematical
analysis are not as useful as they seem to be. Consider the manual
control disturbance rejection case where fast disturbance attentua-
tion is more desireable than total disturbance rejection which

entails a very long "settling time."

VII.4 Nonlinearities -- The Engineering Approach

All the current robust control design methods, including QFT, yield
linear compensators for 1linear, but uncertain, plants. Hence, the
achieved robust performance applies to "small signals" only. The intrin-
sic scalability property which is afforted by linearity breaks down in
the face of nonlinearity. The worst offenders are saturation type non-
linearities. The latter are encountered in actuators, which, unfortu-
nately, are invariably located at the plant inputs. Both displacement
and rate saturations significantly reduce the achievable benefits of
(high gain) feedback. Thus, consider the extreme case of zero inputs to
linear plants: the output will always be zero, irrespective of the (lin-
ear) plant, and so infinite robustness is achieved. The lack of robust-
ness becomes evident when the plant is being driven hard (with a large
input signal -- it is "slewed") and nonzero inputs are applied. This is
also generally true in robust feedback control systems once significant
slewing is attempted, and is due to nonlinearity and saturation. Fur-
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thermore, nonlinearity and saturation need to be addressed when feedback
control is used to stablize open-loop unstable plants. Indeed, from a
"small signal" point of view saturation is equivalent' to opening the
feedback loop. This will have catastrophic consequences, for it will .
cause instability and departure. "

Hence, when saturation is encountered during simulations of the

designed feedback control system, actuator "anti-windup" schemes must be <
employed. One might want to relax the robustness requirements and
subsequently employ a limited degree of gain scheduling. Another

possibility is to somewhat relax the tracking performance specifications
and reduce the BW of the prefilter. This results in the tracking not
being as tight as initially desired. However the error signal will be
ramped into the compensator, thus delaying or eliminating the onset of
actuator saturation.

VII.5 Plant Inversion

Given an m-output vector y, an m-input vector u, the LTI plant

transform equations can be written in the form (see Sec. III.1)

D(s)y = N(s)u (VII.3)
with D(s) = [d;(s)] and N(s) = [n;(s)] being mxm polynomial matrices® in
s. The resulting plant matrix P (y = Pu) is

(Adj D)N _

= D-l = - .. VII.4
2 N=-——p = [Pi(s)] ( )

Suppose that the inverse plant
P* = [pi;] = [1/g;3] (VII.5)

is needed , for example, as in some of the QFT techniques. The designer

can obtain it either from Eq. (VII.3), i.e., since u = ply,

Pt =N3D = _(_g_:_'g_z\_f)_D (VII.6) 4
det N
or from the state equations i.e.: -
\
X=Ax + Bu (a) y=0Cx (b) (VII.?7)

that describe the nth-order plant,where the matrices A, B, C are nxn,
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nxm, and mxn, respectively, and which, in turn, yields the following

expressions:
y = C[sI - A]'Bu (VII.8)

In other words,

P=Cl[sI-AB-= {fé_a_} (VII.9)

where n; and 4 are polynomials of degree ¢ and n, respectively, in s; ¢
< n and d is the characteristic polynomial of A.

For the numerlcal calculation of P! it is much better to use Eq.
(VII.6) rather than Eqg. (VII.9). The reason why is best illustrated by
considering a 2x2 (m = 2) plant utilizing the second approach. Thus,

from Eq. (VII.9):

n..
() |
-1 J { d a Adj {nlj}/d _ dzAdj {nij}

det (o }/d® det /¢ ddet {n;)

(VII.10)

In general, for the mxm control system:

. _d7ad o} (VII.11)
d=t det {n;;}

-1

Thus, if P’ is obtained from Eq. (VII.11), rather than directly
from Eq. (VII.6), then m - 1 cancellations of polynomials from the nu-
merator in Eq. (VII.9) with the m - 1 polynomials in its denominator is
required. The numerical poles/zeros cancellations will of course not be
exact, because of the inevitable computer round-off. Note that m - 1
such cancellations of each zero of the numerator with them -1 poles of
the denominator must occur. Thus, in order to recover numerical
accuracy one must factor all the numerator and denominator polyno-
mials of P! and then check out the inevitable inexact cancellations.

Conclusion -- Evaluate det P and P! directly from Eq. (VII.3).
To do this, one needs the plant equations in the form of Eq. (VII.3),
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which may not be readily available from the state space form. Therefore,
the designer is very strongly advised at the very onset of the design
process to obtain the data in the form of Eg. (VII.3).

VII.6 Invertibility

The question is often asked: "How does one know that P(s) is
invertible?" Obvioulsy, the plant needs to be square, i.e., P is mxm.
Then, bearing in mind that the entries of P are not real numbers but
instead are (rational) functions in the dummy variable s, formal

invertibility is almost guaranteed. Indeed, the following holds:

Theorem -- The mxm matrix P(s) in Eq. (VII.9) is invertible iff the
system (A, B, C) is controllable and observable. Moreover, in the
formulation of Eq. (VII.10) no "pole/zero" cancellations occur iff
the above system is controllable and obervable.

Proof outline -- If the plant is not controllable and observable

then even a formal inversion of P won't be possible because some of
the rows and/or columns of P will be linearly dependent over the
real field.

Finally, controllability and obervability of the control system are

"a given" in the real world.

VII.7 Psuedo-Continuous-Time (PCT) Systen

In Chap. I an overview of the QFT design method applied to MISO
sampled-data (S-D) control systems? is presented. As pointed out in
this chapter, a m.p. s-domain plant becomes a n.m.p. plant in the w-
domain. Also, as is well known, in converting an analog system whose
stability, in general, is determined by the value of the open-loop gain
K, to a S-D system, its stability is now determined not only by the
value of K but is also a function of the sampling-time T. In general,
in converting an analog system to a S-D system the degree of system
stability is decreased. Because of this w-domain n.m.p. characteristic,
as noted in Figs. I.15 and I.16, there is a "restricted" frequency band
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Aw = wg - o, wg > o (or Vg > V), in which loop shaping must be
accomplished while satisfying all the bounds. Such a "restricted"”
frequency band does not exist for analog systems. Thus, for S-D systems
this "restricted" frequency band makes loop shaping a 1little more
difficult to accomplish. Finally, systems which are strictly proper in
the s-domain are proper, but not strictly proper in the w-domain.

A technique for "by-passing" the restricted frequency band problem
for a w-domain QFT S-D system design is to convert this S-D system to a
psuedo-continuous-time (PCT) system.” The criteria? for converting a
given S-D system to a PCT system must be satisfied in order to accom-
plish a satisfactory QFT design. The QFT design is then accomplished in
the s-domain for the PCT system. The resulting s-domain controllers and
prefilters are then transformed into the z-domain by use of the Tustin
transformation.¥ The PCT QFT design approach was used to design a MIMO
digital flight control system for an unmanned research vehicle® (see
Chap. IX). This approach.was also used to design a MIMO digital robotic
control system.!® Both designs were successful and met all desired

performance specifications.

VvIiI.8 Summary
Engineers are applying the results of the scientific method to

achieving solutions for real world problems. As an example, British
Aerospace Ltd has stated to Professor M. Grimble, University of
Strathcldye, the following: "The QFT approach has the obvious advantage
that it is close to engineers' existing experience on classical design
methods. However, it provides facilities to deal with uncertainty which
are not available in traditional methods. More recent tools such as Hwo
design also show promise but are very different to the existing
procedures used in parts of the Aerospace industry. The QFT approach
therefore appears to have the attractive features of providing a link
with existing techniques whilst at the same time providing many of the
advanced features needed for the 90's high performance systems. What
might be needed are tools for the future which combine the attractive
features of OQFT and Hw approaches. In this chapter guidelines are
provided to the control engineer on how to interface between the
scientific method and engineering. In conclusion, an attempt is made to
bridge the often lamented about gap between theory and practice.
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Chapter VIII __ MIMO QFT CAD Package (Version 3)15:47.48,69-71

VIII.1 Introduction

This chapter presents the up-dating of Version 2 of the MIMO/QFT
CAD package. This updating entails the implementation of algorithms for
the design of a robust multivariable control system that, in addition,
rejects external disturbance signals. Both analog- and discrete-time
MIMO tracking control systems are considered. Version 3 of the CAD
package is capable of carrying through a robust control design from
problem setup, through the design process, to a frequency domain
analysis of the compensated MIMO system. For analog control problems,
the design process is performed in the s-plane, while for discrete
control problems the plants are discretized and the design process
proceeds in the w’-plane. The package automates: the selection of the
weighting matrix; the discretization of the plants; the formation of the
square effective plants; the polynomial matrix inverse required to form
the equivalent plants; the generation of templates; the selection of a
nominal plant; the generation of stability, tracking, cross-coupling

disturbance, external disturbance rejection, gamma, and composite

bounds; the loop shaping; and the design of the prefilter elements.
This is followed by a frequency-domain analysis of the completed design,
and export of this design to the MATLAB SIMULINKR toolbox in order to
validate the frequency domain design by time-domain simulations. The
bound generation routines and graphics have been enhanced. The
allocation of the degree of the cross-coupling effects rejection is
automatically performed, while in the process of generating the tracking
bounds. Gain scheduling may be included in the weighting matrix. The
improved (second) method may be applied for the general case of an mxm
effective plant for both external disturbance rejection and tracking
control problems. The MIMO QFT CAD package is implemented using
Mathematica and is hosted on Sun Work- station platforms. The CAD
package can also be used to perform a QFT design for the special case of
a MISO control system. A PC version of this CAD package is available.
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VIII.2 Introduction: Overview of Multivariable Control

The CAD package (Version 3), as outlined in Fig. VIII.1, is a A
design tool for applying the Quantitative Feedback Theory (QFT) +
technique to analog and digital multivariable tracking control and

external disturbance rejection design problems involving MIMO plants

[ 4

having structured plant parameter uncertainty. For tracking control ™
problems, a MIMO square effective plant P, with m inputs and m outputs
is to be controlled by use of a diagonal compensator G and a diagonal
prefilter F in the feedback structure shown in Fig. VIII.2. For
external disturbance rejection problems, see Fig. VIII.3, a diagonal
compensator G 1is designed such that the system rejects outside
disturbances which are projected to the outputs of P, through the
disturbance plant model P;, as shown in Fig. VIII.4. The system
structure of Fig. VIII.3 can be used for a control problem specifying
both tracking and external disturbance rejection requirements. For both
classes of control problems the closed-loop system is required to meet
appropriate stability and performance (tracking or external disturbance

rejection) specifications.

W,
QC}—,'L—— SN R ’?‘j .
. Il F RN G c | Pe
F,O—3— . (O
| \ w,
I -1
' :
| : -1
-

Fig. VII[.2 MIMO QFT controller block diagram.

VIII.3 Continuous-Time vs. Discrete-Time Design (see blocks 9 and
10 in Fig. VIII.1) X

-

The design for a continuous-time system is done in the s-domain by

the well defined analog QFT design process. These same procedures, as

»

shown in Fig. VIII.1, are utilized for discrete-time systems that are

described in the w'-domain (referred to in this sequel as the w-domain).
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Fig. VII[.4 Partitioning of Pg.

As indicated in Block 9, the user selects the analog or discrete design
CAD package route. Once F(w) and G(w) are synthesized, they are
transformed into the z-domain for implementation by a digital computer.
Thus, the following sections, although they refer to the s-domain
design, apply equally well to a w-domain design.

VIII.4 overview of the Multivariable External Disturbance

Rejection Problem

Using the QFT design technique, external disturbances applied to
the uncertain MIMO plant P; are to be rejected by use of a diagonal
compensator G in the feedback structure shown in Fig. VIII.3 such that
the closed loop system meets stability and performance specifications.
Obviously, a prefilter F is not required for pure external disturbance
rejection problems in which it is assumed that the tracking command
input is zero in Fig. VIII.3. Thus the mgm SISO equivalents of the mgxm
MIMO external disturbance rejection system are shown in Fig. VIII.5 for
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the case in which my = m = 3. The plant model P; is partitioned into two
distinct plant models P, and P, as shown in Fig. VIII.4 for the OQFT
design process. The plant P, models the transmission from the external
disturbance inputs to the outputs of P; and features only the external
disturbance rejection problens. P; does not affect the closed-loop
stability of the m feedback loops in Fig. VIII.3. The plant P, models
the open-loop transmission of P; in the feedback loop; P, takes the place

of Py in pure tracking control problems.

Fig. VII[.5 3x3 MISO Equivalent Loops for External Output
Disturbance (r = 0).

VIII.S5 Open-loop Structure

When the plant matrix P is not square, then a square mxm plant P,
is formed from the mx{ plant P by use of the £xm weighting matrix W as
shown in the block diagram in Fig. VIII.6é for analog designs, and Fig.
VIII.7 for discrete designs. Even if m = £ one may still use the

weighting matrix W for the purpose of gain scheduling if needed. Thus:

[— (VIII.1)
e
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Fig. VII[.7 Formation of discrete effective plant P..

The open-loop plant P is in general constituted by four component
parts. A block diagram showing the placement of the loaded plant model
P,, the actuator dynamics T,c, the sensor dynamics Tgy, and the sensor
gain matrix Wy is shown in Fig. VIII.8. The expression for the plant

matrix P, of dimension mx?¢, which in general is not square,is:

P = TopWomP, W (VIII.2)

The disturbance plant model P, is in general constituted by three
component parts. A block diagram showing the placement of the loaded
model P,, the sensor dynamics Tgy, and the sensor gain matrix Wy is
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shown in Fig. VIII.9. The plant P; of dimension mxm; is, in general, not

square. The expression for P; is therefore:

P, = TomMomPs (VIII.3)

According to the partitioning of the disturbance rejection system in
Figs. VIII.3 through VIII.9, the bare plant is composed of two transfer
function models P, and P; as shown in Fig. VIII.10. These transfer

function matrices, which may not be square, are loaded by the designer

X, =1 X:

Tact, ) > —— —>1r——)
-xz—.)T e -;_.)— PL | WSENS _).Il.-—)
5 [Liene ,,1’ > > l.___ >

Actuators

P

Fig. VII[.8 Components of the Plant

, ——
L ] - 'r—)—’
. Weens| A== :

. PdL . . l |

Sensors

Fig. VI[.9 Components of the Plant P,.

Fig. VII[.10 Partitioning of bare plant model.
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and placed into the control system structures used by the CAD package
shown in Figs. VIII.8 and VIII.9, respectively.

VIII.6 Formation of Plant Models for Tracking Control Problenms
(see blocks 4-13 in Fig. VIII.1)

For both analog and discrete control problems the plant model P to
be controlled (see Fig. VIII.1l) is in general constituted by the four
analog component parts: the loaded plant model P;, actuator dynamics
T,cr(S), sensor dynamics Tgns(S) ., and the sensor gain matrix Wgys(s). The
plant P(s) for the J plant cases : = 1,2,...,J is therefore formed as

follows:

P, () = Wggys Toms(S) Py (S) T, or(S) (VIII.4)

For a discrete-time control problem, the analog plant P is embedded
in the digital control system by placing a zero-order-hold before the
inputs of the plant P and by sampling the feedback signal of the plant

outputs.

The plant P of dimension mx¢ is, in general, not square. Since QFT
requires a square plant then the square mxm effective plant P, is formed
from the non-square mx¢ plant P by use of the £xm weighting matrix W .
It is desirable to select elements of W such that the determinant of
P.(s) is m.p.. For continuous-time designs, the Binet-Cauchy theorem
(see Sec. V.8)'is applied to P,(s) in order to determine whether a m.p.
det P_, (s) is achievable by an appropriate W. If so, it will result in
all (gz), being m.p. For discrete-time designs one can apply the Binet-
cauchy theorem to P,(s) in order to minimize the number of RHP zeros of
det P, in the w-plane by an appropriate W. In some multivariable control
problems, the degree of uncertainty in the plant P may render impossible
a successful robust design. Thus, for these cases, (minimal) gain
scheduling of W may be required to affect a QFT design by allowing a
different weighting matrix W, for each plant case .. P, for plant case

. is formed from P, and W, as follows:
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P, = [pij], = B, (VIII.S5)

For discrete-time control problems, each plant P (s) is discretized
as each P,, is formed. To discretize P,(s) an exact z-transform is
performed, followed by the z- to w- transformation resulting in w-plane

transfer functions, i.e.:

P (z) - P (w) (VIII.6)

The QFT design process then proceeds in the s-domain for a continuous
design or in the w-domain for a discrete design using exactly the same
design steps unless stated otherwise.

The effective plant matrix P, must have full rank, viz., controll-
ability and observability are assumed, and have diagonal elements that
have the same sign for all plant cases as w - ®». These are conditions
that any of the usual LTI design techniques must satisfy (see Sec. V.8);
they are not unique to QFT. The CAD package therefore allows the sign
of the m diagonal plants to be examined for the J plant cases as w » ®
in table form. The CAD package also allows the designer to list the
determinant of P,, one plant case at a time.

A non-zero determinant is indicative of full rank. The numerator
factors of the determinant, which are zeros of the g;, are examined as
well. Thus, these determinants determine the m.p. or n.m.p. character of
the effective plants (g;),. If any P, is unacceptable based on the above
criteria, the weighting matrix is revised, P, is recomputed, and the

tests are applied again.

VIII.7 Inverse of P, (see blocks 14 and 15 in Fig. VIII.1)

The polynomial matrix inverse is performed using the Mathematica

inverse function:
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- _ adj By _ ) (VIII.?)

° det P,

The equivalent plants are then formed by inverting the elements p{, that
is:
” det P

0= ——2=1g;} = { : } (VIII.8)

adj P, 15

The Q matrix elements become the equivalent plants of the MISO loops.

VIII.S8 MISO Loops of the Tracking Control Problem

By the principle of superposition, each MISO loop transmission (see
Fig. VIII.11l) consists of both a tracking and a cross-coupling compo-
nent. When using a diagonal prefilter, only the diagonal MISO loops

have a transfer function component due to tracking:

t;; =t + ¢t (VIII.9)

11 Tyg Ciy

off-diagonal loops, with f; = 0 and i # j, have a transfer function

component due to cross-coupling only, i.e.:

t;; =t ; where 1 # J (VIII.10)

Expressions for tracking and cross-coupling transfer function
components of the (ij) MISO loop are explicitly given by:

L 3
= g:(a;), | _ (L;),
(tr,j); . 13['77?1’((1_11)—‘] = fij[m} (VIII.11)
IS
P
_ (egy)i(ass), _ (es3)0(as5)s
(t01j)l T ¥ gi(qii)l T T+ (Li)'l. (VIII.12)
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where the index . specifies one of the J LTI plants, i.e., ¢ = 1,2,
--+,J, and where L, = gg;. The cross-coupling effect input, a function
of all other controlled outputs, can be expressed by the equation:

(VIII.13)

Fig. VII[.11 3x3 MISO Equivalent Loops for External Output
Disturbance (r = 0).

VIII.O MISO Loops of External Disturbance Rejection Problenm

For external disturbance rejection problems, each SISO loop
transmission (see Fig. VIII.1l1l) consists of only a disturbance
component due to cross-coupling effects and the external disturbance
forcing function:

tis = ta, (VIII.14)

The transfer function T; relating the disturbance input of the (i,j) SISO
loop to its output, [see Egs. (VI.27), (VI.30), and (VI.31)], is given
by:
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(ta,,), = (do )1 (disdy (o) (2id), (VIII.15)

1+ gi(qii)‘ 1+ (L.i)t

where the index : specifies which LTI plant is being considered, i.e.,
. =1,2,..,J3, and where L; = g|g;. In comparing Eq. (VIII.1l5) to Egs.
(VI.25) through (VI.27) the following relationship holds:

P=P,=(A+ B

The SISO loop disturbance input, a function of the external disturbance
input and all other controlled outputs (cross-coupling), is expressed
[see Egs. (VI.31) and (VI.32)] by the equation:

_ m re,.
dejj = (dexe) 35 = €15 = [P‘lpd]ij T [—ﬁ]

k#j | 9ix (VIII.16)

where Pﬂfpﬂij

is the (ij) element of the transfer function matrix product P/'P,.

VIII.1O O Matrix validation Checks (see block 16 in Fig. VIII.1)

For analog and discrete tracking and external disturbance rejection
problems, the Q matrix elements are tested to verify that the condition
of diagonal dominance is satisfied. If diagonal dominance holds for all
plant cases, then a QFT Method 1 design may be used. Ootherwise, a QFT
Method 2 (improved method) design must be used. If the results of this
test are not satisfactory, then the weighting matrix W can be modified,

and the Q matrix recomputed.

Additional tools for examining the equivalent plants gq; of the Q
matrix include a Bode plot function and a transfer function display
subroutine. The Bode plot for a Q matrix element can be displayed for
a specified set of plant cases or for all J plant cases together. The
Bode plot for the set of J plant cases is useful for displaying
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variation in equivalent plant transmission as an aid in selecting
representative template frequencies. Also, the CAD package allows the
Q matrix transfer function elements to be displayed in factored form for

any selected plant case.

To reduce the order of the Q matrix transfer functions the package
performs automatic pole/zero cancellation, canceling nearly identical
pole-zero pairs based on a user specified ratio of the distance between
the pole-zero pair to the distance of the zero from the origin in both
the right-half and left-half plane.

VIII.1l1 Improved Method (see blocks 19 and 20 in Fiqg. VIII.1)

The improved QFT Method 2, takes into account any correlation
between the uncertainty in the designed MISO loops and the next row of
MISO loops for which a design is to be performed. The standard approach
of QFT Method 1 assumes worst case conditions and does not take this
design information into account. The improved method requires the
derivation of the equivalent g plant transfer function for the next MISO
loops yet to be designed. For both tracking and external disturbance
rejection problems, the new set of transfer functions required by the

improved method are generated using the equation:

1+ L,
L+ Ly - Yism

(VIII.17)

Qije(n+1) = Qije(n) [

where the compensator g, for row k of the MISO loops has been designed

(Iy is known), and where:

Ly = 9xGiko(n (VIII.18)

= Yxke(n)Dije(n) (VIII.19)

Yijm =
Qe (n) Dike(n)

and dy.; = du are generated during the matrix inversion of P.. The
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number in parentheses in the subscript of the improved method plants
indicates the number of times this method has been applied to generate
the plant transfer function. For example, the plant g, is obtained by
applying the improved method once, and Q. in Eq. (VIII.17) is obtained
after applying the improved method n times. (i.e., n compensator
elements of the matrix G were designed, and the improved method was
applied after each design is completed.) Improved method plants are
generated for all plant cases and for each row of MISO loops for which
the compensator has not yet been designed. The notation kX on I, is not
to be confused with the standard notation i on I;. The notation k, as
used here, denotes the index of the loop most previously designed, i.e.,

k = i-1 if loops are designed sequentially.

vIII.12 Specifications (see blocks 17 in Fig. VIII.1

VIII.12.1 Stability Specifications

A stability margin is specified for each row of MISO loops. The
stability margin may be specified in terms of the gain margin gm, the
phase margin angle vy or the corresponding M; contour. The two remaining
specifications are calculated from the one specification that has been
entered. only the M, contour stability specification is stored in

memory.

VIII.12.2 Tracking Performance Specifications

Frequency domain performance specifications are defined in the form
of LTI transfer functions. For the diagonal MISO loops upper and lower

bounds are specified as follows:

a;; s |l € by for 1=1,2,...,d (VIII.20)

For the off-diagonal MISO loops the following upper bound is specified:
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lti;l, <« by for v=1,2,...,J0 (VIII.21)

ijlt

VIII.1l2.3 External Disturbance Rejection Performance Specifications

For all MISO loops the following upper bound is specified:

|€yl, s b;;  for i+3, v=1,2,...,0 (VIII.22)

This upper bound is determined based upon Egs. (VI.46) and (VI.47) in
Chapter 6. (Note that upper case 1letters for the bounds are used

therein.)

For analog design problems, all performance specifications are
defined as s-domain transfer functions. In the case of a digital
control problem, the performance specifications are approximated in the
bandwidth of interest by making the substitution s - w. If the sampling
rate is not sufficiently high for the above assumption to hold, the
s-domain transfer functions yielding the desired performance specifica-
tions, are transformed to the z-domain and then transformed into the

w-domain.

VIII.12.4 Gamma Bound Specifications

The improved method requires the derivation of the effective g
plant transfer function, i.e. Eq. (VIII.17). By proper design of each
compensator g,, new RHP poles will not be introduced in g;.. By requiring
the magnitude of the denominator of Eq. (VIII.17) be larger than a small
value €;, sign changes in the denominator are prevented and new RHP poles

are not introduced. This constraint is given by:

€ < |1 + Iy - vyl (VIII.23)

A unique minimum value €, is specified by the designer for each of the

k=1,2,...,m channels.
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VIII.13 Bounds on the NC (see block 23 in Fig. VIII.1

For a given row i of MISO loops, and for a template frequency w =
w;, several bounds may be included in the set plotted on the NC. These

bounds include a stability bound, an allocated tracking bound, cross-

coupling bounds, external disturbance bounds, and gamma bounds when
using the improved method. The allocated tracking and cross-coupling
bounds are generated such that the proper reduction in overdesign is
achieved when using the improved method. This set of bounds can be
replaced by a single composite bound before beginning a design.

VIII.13.1 Stability Bounds

A stability bound is generated for each template. The stability
bounds constrain the maximum closed-loop transmission of the MISO loop

with unity gain prefilter to have a bounded magnitude of:

9: (i), VIII.24
[1+gi(qii)1 < M ( -24)

The bound is plotted for a given frequency by plotting the path of the
nominal point while traversing the M; contour with the template generated

for that frequency.

VIII.13.2 Ccross-Coupling Bounds

For tracking problems, cross-coupling bounds are generated for each
template, one for each off-diagonal MISO loop in the row of MISO loops
for which the compensator is to be designed. Each bound is generated

based on the constraint:

<b,;, for i=#*j (VIII.25)

lti:ll = ij

47
1
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which is a function of all other cross-coupling controlled outputs. The

specifications dictate that C; is less than an upper bound for each plant

case (.
. m
(ICislmax), = B [lbﬂl} (VIII.26)
v k7 | laul,

When the improved method has been applied, overdesign is substantially
reduced by modifying Eq. (VIII.26) as follows:

b, . £
(lcz'jlv.)max = k*lz:for [_QJI_] + k#lzfor WJ | £x] ]

Ly, £; unknown Dk s Ly, i unknown |9ikm |

(VIII.27)

where f,; = 0 when k # j for the case of a diagonal prefilter F required
by the MIMO QFT CAD package.

Based on Egs. (VIII.25) - (VIII.27), a lower bound is placed on
1+ LJ as follows:

|1 + L, > Ic”'l;axlqﬂl (VIII.28)
iﬂ

By substituting IL; = i/m into Egqg. (VIII.28), the latter is transformed
such that the bound is plotted on the inverse NC, i.e.,

|Byy|

m
< (VIII.29)
Il-fm‘ dcuthJQHL

Equation (VIII.29) is the basis upon which the cross-coupling bounds on
I, are generated. The bounds are generated such that the correlation
between m and g; in Eg. (VIII.29) is properly taken into account over the
range of the plant parameter uncertainty which is outlined by the
template when the nominal loop transmission does not violate these
bounds.
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VIII.13.3 Gamma Bounds

Gamma bounds are generated for each template, where the compensator
for row j is to be designed after the compensator for row i of the MISO
loops is designed. It is desired that the magnitude of the denominator
of the effective plant q,, calculated using Eq. (VIII.17) for an improved
method design, not be smaller than a specified minimum value despite
plant uncertainty. Thus, the gamma bound is generated based upon

satisfying:

|1 + Lp - Yyl 2 & (VIII.30)

where L, and 7; are given, respectively, by Egs. (VIII.18) and (VIII.19).

Satisfying the constraint in Eg. (VIII.30) prevents a sign change
(preventing the introduction of RHP poles) in the characteristic
equation of the improved method plants' of Eq. (VIII.17). This enhances
the ability to design a stabilizing compensator for each successive
feedback loop. Given the range of plant uncertainty defined by the
templates and variation of y; among the plant cases, each gamma bound is
generated such that Eq. (VIII.30) is satisfied when the nominal loop

transmission L;, does not violate the gamma bound.

VIII.13.4 Allocated Tracking Bounds

For tracking problems, allocated tracking bounds are used to
insure that variation in closed loop frequency domain transmission t; of
the diagonal MISO loop does not exceed the variation §z permitted by the
performance specifications. Variation in the closed loop transmission
of the diagonal MISO loop results from both uncertainty in the response

due to tracking and from the presence of the cross-coupling effects:

t;; =t, +¢ (VIII.31)

11 Tis Ciy

where t; and t, are given, respectively, by Egs. (VIII.11) and
(VIII.12). The constraint on I; used to determine a point on the
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tracking bound is:
Lm(Ty + &, ) —Lm(Tp, -t ) <8 (VIII.32)
where the transmission Ty, with unity gain prefilter, is:

L,
. VIII.33
RTT+1I, ( )

and the most extreme transmission due to cross-coupling effects is:

C. T
- | iimxl I Jg.xl (VIII.34)

Ctimax FA

Because points on the cross-coupling bound (if generated) are identical
to those on the allocated tracking bound for the value of c, in Eq.
(VIII.34), only an allocated tracking bound is generated for diagonal
MISO 1loops. By constraining L, to be above the bound, the actual

variation in t; is less than t._.

VIII.13.5 External Disturbance Rejection Bounds

External disturbance bounds are plotted for each template, one for
each MISO loop in the row of MISO loops for which the compensator is to
be designed [see Egs. (VIII.14) and (VIII.15)]. The disturbance
entering the (ij) MISO loop resulting from the external disturbance
entering through P, and from the cross-coupling transmissions is given

by Eq. (VIII.16). The specifications dictate that d% is less than an

upper bound for each plant case : in the set of J plants; i.e.:
m
1 IQuI
|d,,, |, < |[B"PSl|, + ]; {-——— (VIII.3S5)

For a Method 2 design in which the improved method has already
been applied, (say n times so far) the calculation of
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( | deij |max)l
is modified as follows: by replacing the term Itﬁ|/|qu in the summation
above (a) with |by|/|Quel|. which is utilized when the improved method has

not yet been applied, and (b) with

-1 -1
lgie [P 5 (VIII.36)
q”:(n) 1

when the improved method has been applied to take into account the

designed open loop transmission I;.

VIII.13.6 Composite Bounds

A set of composite bounds is formed based on any or all of the
tracking, stability, cross-coupling effects, external disturbance
rejection, and gamma bounds. The composite bound for a given frequency
is formed by retaining the most restrictive portion of the bounds for
the given frequency for which the composite bound is formed.

VIII.1l4 Compensator Design (see blocks 24-25 in Fig. VIII.1

The compensator for an analog system (a controller for a discrete
system) is designed to satisfy design specifications for the entire row
of MISO loops in which the compensator is used. Since I, = gd; is the
same for all MISO loops in a given row, bounds for all MISO loops are
plotted together on the NC. The compensator design may thus be
performed for an entire row of MISO loops using a single design
jteration based on composite bounds plotted on the NC.

The open-loop transmission is shaped by adding, deleting, or
modifying the poles and zeros of the compensator and by allowing
adjustment of the gain until an acceptable loop shape is obtained.
Stabiliy is checked during loop shaping by examining the nominal closed-

loop MISO transmission in factored form. All closed-loop s- or w-domain
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poles should be in the left-half-plane. For a discrete design, g;(w) is
transformed by a bilinear transformation to g;(z). As a validation
check, the Bode plots of g;(w) and g;(z) are compared for O < w <
2/3(w,/2). If very close, then one can proceed, since robustness will
be maintained in the z-domain. Next, proceed with the formation of A (z)
= I;(2)/[1 + L;(z)] in order to ensure that all the poles of A(z) are
inside the unit circle (see block 26 in Fig. VIII.1). If not, g; needs
to be modified in order to achieve a stable system for all cases.

VIII.1S5 Prefilter Design (see block 28 in Fig. VIII.1)

The proper design of the compensator guarantees that the
variation in closed loop transmission due to uncertainty for t; is
acceptable, but does not guarantee that the transmission is within the
upper and lower performance tolerances a; and b,. The prefilter is
therefore required to translate the closed loop transmission t; such that

it satisfies the upper and lower performance tolerances.

The prefilter design begins with the determination of Ty, and Tpun,
the maximum and minimum closed loop transmission due to tracking T with
unity gain prefilter, respectively, at each template frequency w; using
Eg. (VIII.33). As is the case for tracking bounds on the NC, a portion
of the permitted range of variation of t; is allocated to the cross-
coupling effects. Thus, restricted tolerances are placed on t;

bi; = by; - lte,,| (VIII.37)
aj; = a; + |t | (VIII.38)
and the filter bounds on the nominal t; are as follows:
Lm (bi;) - Lm (Ty_) (VIII.39)
Lm (aj;) - Lm (Ty ) (VIII.40)
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Once the filter bounds are generated, a prefilter is synthesized
such that the Bode plot of the nominal t; lies between the two filter
bounds and satisfies t,(s) = 1 in the limit as s - 0. For a discrete
design, F(w) is transformed by a bilinear transformation to F(2). As a
validation check, the Bode plots of F(w) and F(z) are compared for 0 <
w < 2/3(w,/2) (see block 29 in Fig. VIII.1). If very close, then one can

proceed, since robustness will be maintained in the z-domain.

VIII.16 Design Vvalidation (see blocks 25-31 in Fig. VIII.1)

The CAD package provides a number of tests to validate that the
completed MIMO design meets the stability and performance specifications
for the J plant cases. First (block 27), poles of A, for each feedback
loop i are checked to validate that all poles of the characteristic
equation are stable. If some plants are n.m.p., one cannot rely on the

loop shapes on the N.C.

For the second test (block 31), an array of the J open-loop MISO
loop transmissions (Ly), = g;(q;), for all plant cases ¢ = 1,2,...,J are
plotted on the NC along with the M, contour to validate that the
stability requirements are satisfied for each feedback loop i. If no

open loop transmission violates the M, contour, then the stability

specifications are satisfied.

For tracking control problems an mxm array of Bode magnitude plots
is generated for the mxm matrix of elements t; of the closed-loop

transfer function matrix T, where:

T = [T + PG| *P,GF (VIII.41)

where I is the identity matrix, and P, F, and G are the mxm plant
matrix, the mxm diagonal prefilter matrix, and the mxm diagonal

compensator matrix, respectively.

Each Bode plot illustrates the frequency domain transmission t;, for

the set of J plant cases along with the tracking performance
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specifications, to allow the designer to validate that performance
specifications placed on the closed-loop system have been met over the
frequency range of interest. For each diagonal t;, J Bode magnitude
plots are plotted along with the performance bounds a; and b;. For each
off-diagonal t;, J Bode magnitude plots are plotted along with the

performance bound by.

For external disturbance rejection problems, a set of J Bode
magnitude plots are plotted for each t;, along with the external
disturbance rejection specifications b;. The mxm closed-loop transfer
function matrix T, whose elements t; are the transmissions plotted on the

Bode plots, is formed for the J plant cases based on the equation:

r=[I+ PGP, (VIII.42)

where I is the identity matrix, and P;, P,, and G are the mxm; external
disturbance plant matrix, the mxm effective plant matrix, and the mxm

diagonal compensator matrix, respectively.

For the final validation, MATLAB SIMULAB models are generated based
on the completed design, one for each of the J plant cases. The
designer can then insert nonlinear elements such as saturation or rate
limits, and add anti-windup protection. The model is then simulated to
verify that the time domain figures of merit specifications are
satisfied. For a continuous control problem, an analog simulation is
performed. For a discrete control problem, a hybrid simulation is
performed based on the s-domain effective plants P, (s), and the z-domain

compensator G(z), and prefllter F(z).
VIII.17 Summary

Version 3 of the MIMO/QFT CAD package has been developed for both
analog- and discrete-time control system design based on Mathematica.
The design procedure is automated. This includes problem setup,

equivalent plant formation, compensator and prefilter design and design
validation for mxm MIMO systems. Bound generation routines have been
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optimized to reduce overdesign.

The package has been extended to handle

in a unified way external disturbance rejection problems as well as

tracking control problems.
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Chapter IX Development, Implementation & Flight Test Of A Mimo Digital
Flight Control System For An Unmanned Research Vehicle

IX.1 Introduction

The intent of this chapter is to provide the reader with an insight
into the development of a QFT FCS and into the trials and tribulations
in achieving successful flight tests. In this respect, this chapter is
different from most papers that concentrate only on the theoretical
aspects of a flight control system design. Thus, a discussion of the
development, implementation, and successful flight test of a flight
control system, designed using QFT techniques, is presented in this
chapter. The flight control system was designed for and flown on the
Lambda Unmanned Research Vehicle (URV), Fig. IX.1. It is a remotely
piloted aircraft with a wingspan of 14 feet. It is operated by Wright
Laboratory for research in flight control technology .

A

o USAF

L

|/
el
5 &

Fig. X.1 Lambda unmanned research vehicle.
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IX.2 Objective

The objective of the project was twofold. First, develop a robust
flight control system using QFT, and take the design through flight
test. Second, implement an inner loop FCS on the Lambda URV that would
be part of an autonomous flight control system. During the project the
first objective was accomplished and then, because of hardware improve-
ments, a second design was developed and flight tested. This second
design was accomplished to better meet the requirements of the second
objective. The FCS design process used is shown in Fig. IX.2. As
indicated by the heavy dashed line one complete FCS design cycle covers
the process through the flight test and then back to the redesign stage.
During this project there were four cycles around this loop. Two of the
cycles produced unsuccessful flight tests and two produced successful

flight tests.

Roquiremms)——.-@ciﬁcamm)\\ 1( Aﬂﬁf )
\_‘ Sirhi:lglai;m /
%\ e
b ( dortinear
\\ \
\\ Handwa_ru-in—ghe-Loop‘ \ '
\ Slmulatul / ; --------
o} S
N =Y. /
- Flight Control :System -0 %J P
Design-Gycle \..-___.?_f ‘
Fes Besran

Fig. IX.2 Flight control system design process.
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IX.3 First Design Cycle

IX.3.1 Requirements

There were two major design requirements for this project. The
first was a desire to develop a robust flight control system using QFT,
and take the design through flight test. The second was a need for an
inner loop FCS on Lambda that would interface with a autonomous waypoint

directed autopilot.

IX.3.2 Specifications

The time response specifications were selected base on the open
loop response of Lambda. The pitch rate is an underdamped response that
settles fairly quickly. Overshoot and settling time were chosen to be
25% and one second for pitch rate response. Roll rate is an over-damped
response that settles quickly, and the settling time was chosen to be
one second. Yaw rate is also underdamped, but it doesn't reach steady
state as fast as the other two. Yaw rate overshoot and settling time
were chosen to be 15% and two seconds, respectively. These specifica-

tions were transformed into thumbprints.

IX.3.3 Aircraft Model

The aircraft model developmental process began with the use of
Digital Datcom, a computer program which predicts stability and control
derivatives for aerospace vehicles based on the physical characteristics
of the wvehicle. Datcom information formed the baseline model of the
aircraft. This baseline model was refined by using system identifica-
tion software to estimate the aerodynamic derivatives from actual flight
test data’™. Maximum likelihood identification was used to identify the
natural frequency and damping ratios of the short period and roll modes.
This information combined with the Datcom information provided a working

model for the flight control system design.
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IX.3.4 FCS Design

Much of the preliminary QFT design work was accomplished at the Air
Force Institute of Technology’®”™. The first® was based on the DATCOM
model of lambda alone. The second” design was based on the DATCOM model
with the refinements made with system identification. The latter design
used linearized transfer functions to represent Lambda in various flight
conditions, covering the entire proposed flight envelope, to accomplish
the design and for linear simulations.

IX.3.5 Linear Simulations

All FCS designs were simulated using MATRIX, and linear time
invariant state space models representing the full flight envelope of
Lambda. After successful linear simulations, nonlinearities such as
control surface travel 1limits were introduced into the linear

simulation.

IX.3.6 Nonlinear Simulations

During the same period, a nonlinear simulation was developed at
Wright Laboratory. This simulation incorporated a six degree of freedom
simulation, automatic trim calculation, air vehicle kinematics, and
control surface saturation. While this design produced the desired
responses in the linear simulation, when implemented in the nonlinear
simulation, the original control system exhibited undesirable behavior.
The assumptions about allowable gain had been made that were not valid
and had to be corrected. Thus, the allowable gain was modified to

obtain the redesigned controller.

IX.3.7 Hardware-in-the-Loop Simulation

Software from the nonlinear simulation was used to develop a
hardware-in-the-loop simulation®. This simulation allowed the
implemented FCS, which was programmed on a EPROM chip, to be tested in
the aircraft. When the FCS was implemented in this simulation, it was

discovered that the angular rate sensors had high levels of noise, on
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the order of 0.5 deg/sec. The FCS amplified this noise and this
effectively masked any control command signal. The noise was recorded
and incorporated into the nonlinear simulation. By this time, a new QFT
computer-aided-design program was developed by AFIT for designing
control systems which allowed for a rapid redesign to minimize the noise

problem. The FCS was redesigned, tested in all three simulations and

then test flown.

IX.3.8 Flight Test

Two major difficulties caused the first flight test to fail, the
first was reversed polarity on an angle sensor and the second was a
integrator wind-up limiter scheme that did not work. Since the inner
loop FCS was to be implemented as a part of an autonomous system, turn
coordination logic was implemented around the inner loop FCS that relied
on the roll angle. Post flight analysis of the flight test video and
data showed that the polarity of the roll angle sensor was backward,
thus, when the aircraft was commanded to bank, the rudder was commanded
to deflect in the wrong direction. The FCS was turned off and testing
involving the lateral control channel was terminated. Later, during the
same flight test, when the FCS pitch channel was turned on, the aircraft
developed a high pitch rate. This test was terminated and post analysis
revealed that the scheme used to limit integrator wind-up had caused a

numerical instability.

IX.4 Second Design Cycle

IX.4.1 Requirements

The requirements for the second design cycle did not change from
the original requirements. An additional requirement involved the

design of an improved integrator wind-up limiter.

IX.4.2 Specifications

The specifications for the second design cycle did not change from

the original requirements.
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IX.4.3 Aircraft Model

The aircraft model for the second design cycle did not change from

the original requiremenﬁs.

IX.4.4 FCS Design

Since the problems encountered in the first test didn't have
anything to do with the QFT designed FCS, the FCS remained unchanged for
the second flight test. During the second flight test, there was no
attempt to use a turn coordination algorithm. The implementation
involved a major change in the FCS design. The integrator wind-up
limiter involved a different form of implementation for the second
design cycle. In this cycle the FCS's controller was implemented by
factoring the s-domain compensator G.(s) into poles and zeros, i.e.,
grouping individual poles with zeros to form w first- or second-order
cascaded compensators, which are then transformed individually into the
z-domain (see Fig. IX.3). The individual z-domain transfer functions
were each then implemented to obtain the complete FCS transfer
functions. This implementation allowed limitations to be placed only on
those pieces of the FCS that contained pure integrators. Also, it

provides a higher degree of accuracy in the software implementation.

IX.4.5 Linear, Nonlinear, Hardware-in-the-Loop Simulation

A1l simulations consisted of checking out the new implementation of
the FCS. There were no problems encountered during any of these

simulations.

IX.4.6 Flight Test

on 20 Nov 92, the temperature was in the 60s with winds at five to
seven mph. Lambda was flown stick to surface for take-off, setup, and
landing. Due to problems with the first flight test the FCS was engaged
only during the test maneuvers and disengaged. The maneuvers performed
consisted of unit step commands in all three axes. This set of
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Fig. IX.4 Response to pitch-down command.

maneuvers was first performed with the QFT FCS and then with the open
loop aircraft. The response of the controller was very good in that it
performed as it was designed. Figure IX.4 represents the response of
Lambda to a step pitch down command. The dotted lines in the plot
represent the specified response thumbprint. It is important to note
that during this maneuver the aircraft covered most of its flight

envelope by varying in forward airspeed from 75 kts to 110 kts.
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IX.5 THIRD DESIGN CYCLE

IX.5.1 Requirements

The requirements for the third design cycle had not changed from
the original requirements. This cycle involved the design of an inner
loop FCS that had intrinsic turn coordination. After the second flight
test, the sensor noise problem had been reduced by an order of magnitude
by the addition of a hardware noise filter on the output of the sensors.
This allowed a redesign of the FCS to improve the system performance.

IX.5.2 Specifications

Sideslip Command

For this iteration of the design a sideslip angle command was
incorporated as part of the inner loop controller. Since Lambda has a
sideslip sensor, a sideslip command was used to cause the aircraft to
intrinsically fly coordinated turns. That is, the goal of turn
coordination is to reduce the amount of sideslip angle during a turn by

using the proper amount of rudder deflection during the turn.

Yaw Damper

Changing to sideslip command allowed the use of the yaw rate sensor
to implement a yaw damper to reduced the phugoid mode oscillations.
This yaw damper was implemented by adding a washout filter, designed
through the use of a root locus plot. The yaw damper was designed and

then incorporated in the aircraft model for a FCS design.

Specification Change
During the second flight test the pilot felt that the aircraft's
roll rate response was too slow. Therefore, the roll rate response was

change to match that of the pitch rate.

IX.5.3 Aircraft Model

Sensor Improvement
After the second flight test, the problem of sensor noise was
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fixed, reducing the noise by an order of magnitude.

Model Refinement

During the system identification work for the second aircraft
model, some of the parameters had been scaled incorrectly. This caused
some modeling errors. After the second flight test these errors were
corrected through the use of system identification applied to flight
test data.

IX.5.4 FCS Design

MATRIX, was used to develop linearized plant models about flight
conditions in the flight envelope. An attempt was made to choose flight
conditions in such a way as to fully describe the flight envelope with
the templates. To do this a nominal flight condition was chosen to be
50 kts forward velocity, 1,000 feet altitude, 205 pounds, and center of
gravity at 29.9% of the mean aerodynamic cord. From this nominal trim
flight condition, each parameter was varied, in steps, through maximum
and minimum values, while holding the other parameters at their nominal
trim values. These variations produced a initial set of templates. On
these templates variation corresponding to each parameter was identi-
fied. Each variation when translated, on the template, identified an
expanded template area of the flight envelope that required more plants
for better definition, see Fig IX.S5.

IX.5.5 Linear, Nonlinear, and Hardware-in-the-Loop Simulations

The refined Lambda model was implemented in all three simulations.
The FCS was implemented in cascaded method outlines previously. All
simulations produced the desired responses to given stimulus.

IX.5.6 Flight Test

During the third flight test, when the FCS was engaged, the
aircraft exhibited an uncontrolled pitching, or porpoising, behavior.
While the post flight test analysis was inconclusive, a longitudinal
bending mode at 13.2 radians/second seemed to be the likely cause.
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IX.6 FOURTH DESIGN CYCLE

IX.6.1 Requirements

The requirements for the Second flight test had not changed from

. the original requirements, but involved a refinement in the aircraft

model to incorporate a bending mode.

IX.6.2 Specifications

The specifications for the fourth design cycle were the same as

those for the third.
IX.6.3 Aircraft Model

A model of the porpoising behavior encountered in the third flight
test was identified by assuming that the behavior was caused by an
unmodeled effect. Various models were incorporated into the nonlinear
model and simulated. This simulation used the flight test inputs as
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simulation inputs and compared the simulated outputs to the flight test
data. Using this procedure, a violation of the gain margin was ruled
out by increasing the inner loop gain in the model and observing the
response. Instability caused by actuator rate limiting was ruled out by
inserting severe rate 1limited actuator models in the nonlinear
simulation. When a bending mode, modeled as a lightly damped pair of
poles, was inserted in the model, the simulated responses were very
similar to the flight test results.

IX.6.4 FCS Desiqgn

MATRIX, was used to develop linearized plant models about the given
flight conditions and the FCS was redesigned based on the model
containing the bending mode. Note, when the FCS from design cycle three
was inserted in the loop with the aircraft model with the bending mode,
there were violations of stability criteria in the frequency domain.

IX.6.5 Linear, Nonlinear, and Hardware-in-the-Loop Simulation

The new model was implemented in all three simulations and tested.
The new model was tested with both the FCS cycle 3and the FCS cycle 4.
As expected the porpoising behavior occurred with the FCS cycle 3. The
FCS cycle 4 responded within specifications.

IX.6.6 Flight Test

The fourth flight test occurred in September 1993. The field
conditions were a little gusty, but within acceptable limits for the
experiment. During the flight the FCS was engaged and then left engaged
for the entire series of tests. The FCS performed as designed. The
intrinsic turn coordination scheme worked as designed. The pilot was
pleased with the handling qualities and felt comfortable flying with the
FCS engaged at all times. His one criticism was that the roll rate was
too slow. Since our roll rate was limited by the maximum roll rate
detectable by the rate sensors, the problem was unavoidable. When the
data was examined, it was found that all of the 60 hz data had been
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data showed that the FCS did cause Lambda to respond within the
specified envelope, during onset of the command, but, in some cases,
Lambda's response exhibited more overshoot and longer settling time than
specified. These problems could be attributable to the gusty
conditions, since no gust disturbance was specified during the design
process. More flight testing of this FCS will be required to answer

this question.

IX.7 Conclusions

——

This series of FCS design cycles has highlighted many of the
benefits of using a robust design technique, such as QFT, to design and
implement FCSs. Some of those benefits are:

a. The result is a robust design which is insensitive to plant

variation.

b. There is one design for the full envelope (no need to verify

plants inside templates).

c. Any design limitations are apparent up front.

d. There is less development time for a full envelope design.

e. One can determine what specifications are achievable up early
in the design. One can redesign for changes in the
specifications quickly.

f. The structure of controller is determined up front.

The goals of this program were to reveal the benefits of QFT as a robust
control technique, and to prove that a robust flight control system

could be implemented. It is felt that these goals were successfully

achieved.
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Appendix A Design Examples

A.1 MISO Design Problem

Given the plant transfer function:

P(s) = _If_a with the structured parameter uncertainty of

1< k< 100, -3 <as<3

Specifications on ITR(jw)I is given in the following table:

@ 0 0.5 1 2 5 10 20

Im b(jw) 0 1 1 0 -4 -10 -20
Lm a(jw) 0 -2 -4 ~8 -20 (-40) (-80)
[+ o] o0

M <3dB A >3 No specifications on T,

Nominal Plant: P,(s) = 1/s (k =1, a = 0)

Problem: Design L,(s) and F(s) to meet the specifications.

Solution:

A. Template Generation -- The set of J plant transfer functions P;(a; k;),
where P, ¢e ® and i =1, 2, ... , J, used to obtain the templates are:

P1(3I1)I PZ(Oll)I P3(-3l1)l P,(-3,100), Ps(O,IOO), and P¢(3,100 )
The templates all have the shape shown in Fig. A.1 where V = 40 dB and

as w increases the templates become narrower. It is left to the reader

to obtain the templates in order to verify the solution to this problem.
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Fig. A.1 Template 3P, (j,
B. Determination of Boundaries By(jw;) -— The templates are used to
determine the boundaries B;(jw;) and, along with the values of Lm M; and
vV, to determine the U-contour as shown in Fig. A.2.
C. Determination of I (s) --- The design of an optimum L.,(s) is not
unique. Two possible designs of an L,(s) are shown in Fig. A.2. The
designs at the onset should be based upon a qualitative analysis of
»
¥
L(s) = G(s)P(s) = XC(S8) (3.1)
s + a
: and
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L,(s) = G(s)P,(s) = kG;S) (A.2)
Trial 1 -- A type 0 L,(s) function requires the compensator to be
of the format of:
Ks ( ) - ) (A.3)
G =
&) ==y )
which from Egs. (A.1l) and (A.2) results in, respectively:
kK( ) - ( )
L = .
9= v T~ ) (2-4)
and
- kK( ) - ( )
L, (s) i T 3 (A.5)
When a # O, Eg. (A.4) results in
_ kKs( ) -~ )
T, = .
7, (S) ( T ) F(s) (A.6)
and Lm Ty (jw) = - « dB which is unacceptable.

Trial 2 -- A Type 1 L (s) requires the compensator to be of the

format:

_ K( ) - )
G(s) ( T ) (A.7)

which from Egs. (A.1) and (A.2) results in, repectively:

kk( )~ C )

Gral( -0 (2.8)

L(s) =

and

kk( ) - C )

st )~ ( ) (2.9)

L, (s) =

When a = 0, Ty(s) corresponds to a Type 1 system and when a # O Ty(s)
corresponds to a Type 0 system. Assuming this is acceptable an L,(s) is
synthesized, as shown fn Fig. A.2, and results in
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8.504x10%(s + 1) (s + 12) (s + 120) (A.10)

G(S) = 157 2) (s + 10) (5 + 26 .5) (s + 720 £ 7960)

In order to achieve the deslred specification e(®w) = r(«) - c(o) = 0,
for r(t) = u,(t), then the compensator G(s) must be a Type 1 transfer
function in order to yield a Type 1 system for a # O and a Type 2 systenm
for a = 0. The synthesized loop transmission function is

kK( ) - ()
L =
=82 ) - ()

(A.11)

for which three points (denoted by X) are shown in Fig. A.2. It is left
to the reader to complete the synthesis of an L, (s).

D. Design of F(s) --- Based upon the design procedure in Chap. I, the

following nonunique filter Is obtained:

F(s) = (A.12)

P

.5
s +1.5

E. Simulation of Design =--- A simulation of the system for L, (s) is made
for each P,(ak;), where i = 1,....,6, based upon Egs. (A.10) and (A.12).

The simulations indicate that all the specifications on ITR(jw)I are met
except, as expected, when a # O and w = 0. The reader can simulate the

system utilizing his L, (s).
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A.2 MIMO Design Problem

. cgiven: A 2x2 plant where
v
k
o(s) = = |7 k“‘} (3.13)
k21 k22
&
»
has the following independent structured plant parameter uncertainties:
1<k, x2 0.5 <k, <2
5 <k, <10 0.5 <k, <1

The diagonal dominance condition (Sec. III.7) requires, as w - =, that

|q11q22| < Iq13q21| = 2 < 2.5

Specifications:

(a) There is only one command input: r,(t)
(b) |tp| < -20 @B for all w

(c) For |tn|:

Table A.1l
w 0 0.5 1l 2 5 10 20
Im by, (jw) 0 1 1 0 -4 -10 -20
Lm ay(jw) 0 -2 -4 8 20 ) ~o0
(-40) | (-80)
and thus

The values of ay,(jw) are considered to be zero for o > 5,

« ¥

Lm

) oL (2, (j0)] = -

(d) For L; = ¢\d;; and L, = g dxn, respectively:
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S
Lm M, < Lm ! _|<3dB (A.14)
: 1+ I
F L
ILm M, £ Lm < 3 dB (A.15)
L 1+1IL,
Problem: Design Lla(s) ’ Lzo(s) , and £, (s).
A. L,(s) Design --- For loop one design, see Fig. A.3, let f, = 0

(i.e., decouple output 1 from input 2). With f,, = 0 then the loop 1
design becomes strictly a cross-coupling rejection problem (see Fig
III.11).

012‘
1
94 A41
:‘—

Fig. A.3 Loop one

Thus, from Egs. (III.35) through (III.4l)and Egs. (III.50) through
(II1.53), where for an impulse input t = ;s

0
£ = qll(gz; + Cp) - 9un (A.16)
. 1 +949y 1+4949,

Based upon the given disturbance rejection specification
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9112
t = |~ __|<0.1 (A.17)
|0l 1+ g9y
which is rearranged to
1+ gqul 2 I (R.18)
0.1
Since
Cp = ~ty/dy (A.19)
Equation (A.19) is substituted into Eq. (A.18) to yield
10q,t
11+ gl 2| —n= (3.20)
dx

Applying the maximum tracking specification value for Itnl yields:

10b,,q9y,
q;;

|1+ gqul 2 (A.21)

Thus, this constraint imbeds the cross-coupling rejections bounds

specifications on yp,(t). As a consequence the cross-coupling bounds

BqCﬁq) become the composite bounds B%(jwﬁ- For the plant uncertainty

a template can be generated for qj which is good (for this particular
design problem) for all w. The template is simply a 6 dB vertical line.

Also, from the specification ImM, <3 dB and the uncertainty in q;; at

w = o, the universal high frequency boundary can be drawn as shown in
Fig. A.4. The nominal plant qy is chosen to be the i which is at the

bottom of the 6 dB template. Thus,

qu(s) = —i— " (A.22)

251




ol

S

O

.081

LI

e e e

L - R )

] ™) o
'.l.nlbs‘2085‘204‘6302‘5'01‘5‘“2
.

3 | L H == =!

W ,,n, T e -

L\\ w\ -, ‘v,\ ] \\ i = mﬂ Yy 1 :
r\\/ \\M«\\A .n\.{\\(\_ N \\. W ﬁ \T q._.m...\mnnnlvlul.u‘ulm 5
INF, KK AR A DA L e 2 0

ik AN VA VNS, X XA = FAAN T

IS AR RIRE KX o T e

o /S LXK KA AT

HES SSSFUNN VAT LA

w=5

1441

A=

252

Ly
\

\
| wrd
N

111/
Vs
w=50
w*GOf
a¥
-
T—l

|
l

AN
=
N

AN
u:78
w;92“
_.;ll
I

Fig. A.4 Ll (s) design

/ AN

4/ /%3
/_
afitis

/)
vdb -
iz
1
w=128
=1
1

5.5

7
Y 1.4 _}
|I /

=

{

|

|
/=150

0.

\

-y
-
i
]
U-CONTOUR
T 1

T
N

J00Z—
e

R
-
N

-
=
=
(V
>t
A
!
t
|




4 @

Generally, for lower values of w, since Igﬂmll >> 1 then Eg. (A.21) can

be simplified to:

|10,

lgu| 2 (A.23)
! dr2
Multiplying both sides of Eq. (A.23) by q; yields:

10b,q, A.24
|L1,| = Iglqll.l 2 = “" ( )

where I, = giqy; - The worst case scenario must be chosen from the

specifications in order to apply Eq. (A.24). Therefore, for

9, ~ % and g = %
Eg. (A.24) becones
|Ly,| 2 |20by| (A.25)
or
Lm L, 2 26 + Lm by, = B, (jw,) (A.26)

Thus Eq. (A.26) reveals that for this example the composite bounds
B, (jw) are straight lines whose magnitudes are a function of frequency.

Based upon Eq. (A.26) and the given specifications on t,, in Table A.1

the bounds are:

Table A.2
; 1 0.5 1 2 5 10 20
Im B,(jw;) 26 27 27 26 22 N/A N/A

Since the value of by(jw) is very small for w > 5, the tracking
frequency range is effectively 0 < w < 5. The value Lm a,(jw) ylelds
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Sx(jw) = Lm b, (jw) - Im ay(jw) - © dB for w > 5 and the tracking problem
will always be satisfied in this frequency range. It is therefore

necessary to shape the loop transmission li(jw) only for 0 < w < 5.

Only the cross-coupling rejection problem remains for w > 5.

Since the p; elements of P, and in turn all the elements of Q, and
the nominal ¢;; are Type 1 functions then L, (s) should be chosen as a
Type 1 or higher function. A Type 1 functlon is chosen for Li(s). An
initial simple L, (s) design containing only one pole at the origin, one
complex-pole pair, and one zero resulted in Wy = 65 rps. In order to
reduce the value of the phase margin frequency the following L (s) is

synthesized:

54038 (s + 25) (A.27)
s(s +10) (s + 84 £ ji12)

L, (s) =

where w, = 140 rps and is shown in Fig. A.4. Note that the approximation
made in Eq. (A.24) is justified because all the values in Table A.2 are

at least a magnitude above one. Since 1A‘= 91911, then

_ L(s) 540838 (s + 25)
91(s) = g, (5) (s +10) (s + 84 £ j112) (A.28)

B. L, Design (Improved Method) --- The equations for loop 2, see Fig.

A.5 and Egs. (III.35) through (III.38) and Eq. (III.53), are

£, +c
t, = 90 (9fn ) (A.29)
1+ 9,9,
where ¢, = -t,,/q, and
c
t, = 91112 (A.30)

1 +g4q,
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Fig. A.5 Loop 2

Instead of making the necessary substitutions and performing the
associated algebra the following generalized loop 2 equations, see Ed.
(V.4), are utilized in the design.

9u9»
Yo = (a.31)
2 guan
d,p(1 + L))
 ———— Ao 32
I, 1+L -7 ( )
L, = 99, (A.33)

and

91 L12Pn (T = 712)

=0 (A.34)
1-72%1

Cp, =

since £, = 0. Thus loop 2 is only a tracking problem (see Fig. III.10).

Before generating the templates for g, it is necessary to

ascertain whether all the poles and zeros of gy lie in the LHP s-plane

over the region of uncertainty. The proper design of L,(s) guarantees
that the zeros of 1 + L,(s) are in the LHP. Since a m.p. plant is

assumed, then g (s) will also be m.p. However, it is possible for
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1 + L,(s) - yp(s) of Eq. (A.32) to have RHP zeros which become RHP poles

of g5 (s) and therefore of L,(s) . This possibillty must be verified

before proceeding with the design. The knowledge of the presence of RHP
poles is necessary in order to correctly interpret the data for

|gy, (jw) | and Zgy (o) over the frequency range of interest (see Sec.

18.22 of Reference 15).

Plant uncertainty case 10 of Table A.3 represents an unstable
plant. At low frequencies the templates are rectangles 6 dB in height
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Table

A.3

Combinations u

ximums and minimums

sing plant ma

Case | M | 9 ko, Koy Comments
1. 1 .5 5 .5

2. 1 .5 5 1

3. 1 .5 10 .5

4. 1 .5 10 1

s. |1 | 2 | 5 | .5 |

6. 1 2 5 1

7. 1 2 10 .5

8. 1 2 10 1

oo |2 |5 | 5 | .5 |
10. 2 .5 5 1 +« unstable plant
11. 2 .5 10 .5
12. 2 .5 10 1

_______ R SN EOS—

13. 2 2 5 .5
14. 2 2 5 1
15. 2 2 10 .5 | « nominal plant
16. 2 2 10 1

Rando;-;;;;;; --------------------
17. 1.5 1 7 1
18. 2 1.5 9 .75
19. 1.75 .75 6 .75
20. 1.25 1.25 8 .5

257




and essentially 360° wide. That is, the template for w = 0.5 is
essentially 6 dB in height and 360° wide, and for w = 20 rps it is 6 dB
in height, 345° wide at the top and 352° wide at the bottom. The
templates for w = 130 rps and w = 150 rps are approximately 180° and 138°

wide respectively. It is thus apparent, in order to have a negative

phase angle at all frequencies for I@(jw), templates must be generated

for high enough frequencies such that they shrink in width sufficiently

in order to allow a gap on the right side of the U-contour forl, (jw)

to "squeeze" through and achieve the desired value of vy = 45° (for this
example). This analysis of the plant template data reveals: (1) that
the width (change in angle) of the templates is the crucial factor in

the shaping of L, of the template, and (2) that the template shapes go

from being "very wide" (essentially rectangular), as shown in Fig. A.6,
at "low" frequencies to the shape shown by the shaded area in Fig. A.6
at "high" frequencies. As shown in Fig. A.6, that in going from w = 0.5
to w = 300 rps the templates start to "droop" down to the right. This
droop becomes more exagerated if more template points are plotted from
other unstable plants within Q. These unstable plants occur for this
example, when the condition

— k11k22

_ = > 0.5 A.35
To k21k12 ( )

is satisified. This can be seen be partitioning the characteristic
equation of Eq. (A.32) to yield L;/(1 - 75) = -1 for which a root-locus
analysis can be made as the value of %,, is varied. The "very wide"
characteristics of some of these templates can best be appreciated by
the reader by plotting a positive and negative real pole (a and =-a) in
the s-plane. The reader is then urged to analyze the angular contri-
bution of /[1 + j(w/a)] and L[1 + j(w/-a)] as the frequency is varied from

zero to infinity.

In order to simplify the process of generating the bounds
rectangular (solid curve) templates are used as shown in Fig. A.6.

Although making this assumption yields an overdesign.
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Fig. A.6 Template shape

The data for the templates (see Fig. A.7) that play the key role in

achieving the desired value of y is given in Table A.4. Note that at
w = 500 the template is 20 dB in height which the value of V(UHFB) used

to obtain the U-contour.

Table A.4

W A dB Ae°
150 14.5 138
170 15.8 81
180 15 61
200 16.6 37
300 18 10
500 20 ~0

The templates are used to obtain the Bg (jw) = B, (jw,) bounds of

Fig. A.8 for the loop 2

design.

Note that for w < 150 rps the bounds

are considered to be essentially straight lines. That is, these bounds

are represented by the straight line tangent to the top of the Im M,

contour since all the templates for w < 150 rps are greater than 135° in
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w=300
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w=180 —1

Fig. A.7 Tracking Templates for Loop 2

(using a rectangular approximation)
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width. A stable plant is chosen to be the nominal plant, see Table A.3,
and is located at the lower right-hand corner of the templates. Thus

the plant gain values, k;, for the nominal plant are: k; = 2, k,; = 2,
k,, = 10, and k, = 0.5. For these nominal values, where v,, = 0.05, let
a=1- Yi2 T 0.95 (A.36)

thus from Egqs. (A.27), (A.31) through (A.34), and (A.36) obtain

ky,[s* + 178s3 + 21280s? + (196000 + 540838k;;)s + 13520950k;,]
s[as* + 178as® + 21280as? + (196000a + 540838k,;)s + 13520.95k]

dyp, =

0.5263158(s* + 178s® + 21280s? + 1277676s + 27041900
s’ + 178s* + 21280s® + 667303.1579s? + 14232578.955s

0.5263158(s + 49.2349 + j6.0882) (s + 39.7651 + j96.9859)
S(s + 17.3915 * j24.9674) (s + 71.6085 % j101.2169) (3.37)

In order to make g,(s) "fairly simple" the nominal plant is used in Eq.
(A.33) which results in a nonunique g, being designed rather than

L, where

L, (s) = g,(s)gy (s) (A.38)

A synthesized (nonunique) IL,(s) is shown in Fig. A.8. The hump in L,

in the vicinity of w = 150 rps is caused by the complex zeros (w, = 104.8
rps) of the nominal plant. These zeros have a low damping ratio ( { =
0.38) which causes the "rapid" change in the phase angle. Usually a

complicated g,(s) results when adjusting I, (j®) so that it crosses the ¥
B,(j150) bound near the right side of the NC with L, (j») being on the

corresponding B, (jw) bound. However, in order to obtaln a simpler g,(s),

»-

the approach in this example is to design g,(s) so that L, (S) crosses the

first few bounds at a phase angle of approximately -90°. As it turns
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out, for this example, g,(s) does not contribute very much to the phase

angle at the B, (j®) crossing for v < 150 rps; i.e., the phase angle is

due essentially to the nominal plant. The resultant g,(s) is:

g,(s) 3.3155x10'(s + 1000) (A.39)
2 (s + 500) (s + 3500 £ j6062.1778)

where w, = 7000 and { = 0.5. A second design for g,(s) can be made by
choosing smaller values for the real pole and zero of Eg. (A.39) in
order to have I,(s) track down the right side of the U-contour more

closely. In general,a more complicated g,(s) may be synthesized that

approaches the optimal loop transmission function

LZ(jwi)opt = O(jw) = }O(jw) IéO(JO)) (A-40)

whose magnitude lies on B, (jw;), for each value of w, , and whose phase

angle /0(jw) lies on the right side of the U-contour.

C. Prefilter f,(s) Design --- The prefilter design procedure of Chap. IV
requires the wuse of the templates to obtain the values of

Im t, and Lm t, where t, = L,/(1 + L) over the frequency range 0 < w <
20 rps. In this frequency range, for this example, the templates are
between 345° and 360° wide. As a consequence, the location on the NC

where these templates are placed result in small positive values for
Im t,( < 0.1 dB). Thus, small variations exist for Lm t,, i.e.,

At, =Imt, -Imt, will be a very small number in the range 0 < w < 20
rps. For example, the bottom of the template, for o = 20, would be
placed on the Im L, curve at the ILmL,(j20) =38.2 dB point to yield
Imt, =0.1dB and a value for Im t, something less than 0.1 dB. Thus

for w < 20 At, is a very small number and |t2| = 1 for ® = {P}.
Therefore, the corresponding figures of Fig. I.13, for this example, are
obtained by plotting the data from Table B.l, i.e.,
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LmTRu~Lme=Lmbn and Lm Tp - Lm T, = Lm ay

The filter chosen is:

1

a(8) = 555

(A.41)

Note: care must be taken in determining the location of the pole of
Eq. (A.41) since it may be necessary to lower the value of |fn| at large
values of w( > 10), where a, = 0, since this affects the value of Itnl,
etc. [(see Egs. (A.19) through (A.21)].

D. Simulation --- The computer data for y, for a number of plants from
® resulted in |t,] = 1 for 0 < w < 20. Table A.5 presents the time
response characteristics of y,(t), for a unit step forcing function, for

three cases from Table A.3. These cases are chosen on the following

basis:
Table A.S5
Case M t, s t,, s Final Value Figure
10 1.000 3.91574 2.19709 1.000 A.10
(unstable
plant)
15 1.000 3.91276 2.19726 1.000 A.9
(nominal)
16 1.000 3.91276 2.19722 1.000 A.11
(high gain)
(1) Nominal plant --- The loop transmission is obtained based upon
the nominal plant.
(2) Unstable plant --- A "worst" case situation representive of the

unstable plant region of @ .
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(3) High gain plant --- A high gain plant is chosen because it is
representative of the top of the templates on the "nominal plant

side."

Since all the other cases of Table A.3 are extremely similar to one of
the three cases of Table A.5 they are not simulated.

The frequency domain specifications, as demonstrated by the
simulation, are met for loop 2. Although time response specifications
are not prescribed, y,(t) exhibits respectable rise and settling times.
Because of the gross over design any other plant from the plant

paramenter space P should meet the specifications.

In designing loop one the cross-coupling rejections bounds are

dropped to an arbitary low value for the shaping of L; . The synthesized

TIME RESPONSE - tzz‘ UNIT STEP - NOMINAL PLANT
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Fig. A9 Time response y,, () for r,@) = u ():
nominal plant case.
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Fig. A.11 Time response y,,(t) for
r,® = u,t): high gain case.
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L, for w = 20 lies on B,,l(j20) = 6 dB but for w = 10 Lm L,(jl0) = 14.5 dB
< B,,l(le) = 16 dB. Thus, a check on the cross-coupling rejection t,(Jjw)

performance for loop one is made. From Egs. (A.16) and (A.19) obtain:

t12

= -y dy1 = — St;, Q11 (A.42)
g, |1+ L ki, (1 +1,

where d;, = k;/s, ¢c» = 0, and

- L
t, = (9 fn = C3) - 2l (A.43)

1+1, 1+1

Substituting Eg. (A.43) into Eg. (A.42) yields

e = | 2P | [s ][ 9u (A.44)
12 1 +L, | [kp| [T+ I

only the plant parameters associated with the unstable g, plant (case

10) are used in Eq. (A.43) for a simulation. No other plants are
simulated to determine if the cross-coupling rejection specification are
met. The frequency response plot for Eg. (A.44) using the parameters
for the unstable plant is shown in Fig. A.12. As seen from this figure
the -20 dB specification is met. The simulation yields t;,(t;) = -0.0579
at t, = 0.026 s, |t122(ts)| = 0.002 (2% of the specified maximum magnitude
of 0.1) at t, = 2.61 s, and t;;(w) = 0.

E. Summary --- In some problems 7, << 1 and therefore g, = 9, [see Eqg.

(A.32)] which simplifies the design. For the example of this
appendiX 7Yigy = 0.8. Thus for 0.5 < 7, < 0.8 there will exist an

unstable dxn;, i.e., dp», will have RHP poles. An unstable plant with a

pole p, > 0 requires a loop transmission with a crossover frequency
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Wy = > 2p!. Therefore, L, has to have a large crossover frequency.

In order for I, to have a lower value for its w; it is necessary to

design L, so that 1 + I, - 4, does not have RHP zeros. This makes L,

costlier, the benefit going to L, (or g,). This freedom can be used as

a trade-off feature to be used according to the relative sensor noises,
etc.
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Fig. A.12 Frequency response
t,, (j®): an unstable case.
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Appendix B Longitudinal Handling Qualities Approximations &
Bandwidth Minimization'”

B.1 Introduction

In designing automatic flight control systems for modern aircraft
several concerns confront the design engineer. How to include
MIL-STD-1797A specifications in the design? Will the design be robust
enough to handle the uncertainties, not only in the approximations used
to realize a design, but also in the conditions the system will see once
placed into the '"real" world? How large will the required system
bandwidths be, and what are the chances of exciting spurrious modes

(unmodelled high frequency dynamics)?

One of the areas of interest that faces these issues is the design
of fixed-compensation controllers for reconfigurable flight control
systems™“. A desired design will stabilize the aircraft (A/C) in case
of failure until the source can be determined and corrected for. The

salient features of this control law are:

Robust Fixed Compensation
MIL-STD-1971A HQ for Healthy Aircraft
Stability for Large Failure Set

Satisfaction of these requirements can lead to large system bandwidths,
leading to noise corruption, actuator saturation, and spurrious mode
excitation, any of which can be serious for reduced static stability

aircraft.
This appendix addresses the factoring of handling qualities (HQ)

v and bandwidth (BW) considerations into the QFT design method to

formulate a more reasonable point to start off practical design work.

¢ B.2 Background

QFT relies on shaping the loop transmission L to meet certain
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restrictions(bounds) placed upon it by desired system responses and
cross-coupling effects rejection levels. QFT is used extensively for
investigations into robust automatic flight control system (AFCS) design
resulting in fixed compensation without extensive failure
detection/identification (FDI) routines. From the flying qualities
specifications™® Level 1 A/C are the "good" planes that all designers
desire, Level 2 have deficiencies which should be corrected, and

Level 3 are barely controllable. In this presentation the term "flying
qualities" (FQ) is assumed the same as HQ. This isn't quite true since
FQ is a subset of HQ but it suffices for the design presented in this
appendix. During AFCS synthesis using the m.p. QFT design technique it
is hard to guarantee Level 1 (MIL-STD-~1797A) HQ for healthy A/C while
trying to control the same A/C with failures within reasonable loop
bandwidths. This stems from two basic assumptions/steps in design. The
inclusion of the no-fail plant into the same set as all the failed
plants, and assuming the output(s) are controllable, but not Level 1 (it
is normal to relax the tracking specifications a bit for failures to
reduce actuator demands). The design becomes concerned with the
response of the set rather than that one individual plant lost in its
midst. Some of those plants may meet the stricter Level 1 demands, or
they may not. Reducing the size of the plant set will decrease the
"distance" (in a frequency response sense) between plants, but it also
reduces the total number of situations the controller can handle. The
acceptable outputs could be limited a priori Level 1; however, this
would lead to controllers having unrealistic gains and bandwidths trying
to force a crippled A/C to fly like a healthy one. Compensation could
be scheduled, but now some sort of FDI routine is required (which is the
reason for fixed compensation in the first place). For Reduced Static
Stability aircraft (RSS) the problem is compounded further since any
actuator rate/position saturation resulting from over =zealous

compensation can lead to loss of control.>®

What is required is a logical method by which the designer can
factor in HQ criteria while loop shaping and at the same time keep loop
bandwidths reasonable. From an engineering standpoint it should be

simple as possible and provide "feedback" to the designer during
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synthesis. Some way should be devised such that the particular military
specifications can be included into the design process to begin with,
thus avoiding control "kluges" when the design fails to work properly.
Closed-loop checks of the actuator states can provide insight into

saturation.

B.3 Desired Handling Qualities

In order to set the proper frequency responses for control
synthesis they must first be defined from the requisite specifications.
A typ1ca1 desired longitudinal short-period response to a pilot stick
1nput is a second-order system with a closed-loop transfer function of

2
W

TF(s) = R B.1
2
s? + 28,08 + Wy

w, is the short period natural frequency

{p is the short period damping ratio

The damping ratio and natural frequency vary for the type of A/C, type
of task, and the n/a factor. It is assumed that the A/C is an advanced
fighter configuration in a landing scenario, with n/a as the independent
variable. With the task, aircraft, and n/a fixed, an approximate range
of w, and {, can be determined from MIL-STD-1797A. Background documents
to the spec give actual experimental data on ranges of w, and {, from
various A/C simulations and test flights. Figure B.1 shows such a
chart. The points A-H denote the boundary of Level 1 flight. The o,
and {, for these points are averaged over numerous charts of similar A/C
doing similar tasks. The result is a representative group of short-
period frequencies and damping ratios which denote the borders of Level
1 flight. From these a representative group of transfer functions are
developed. The set of transfer functions developed for the conditions
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above are in Table B.l1l. From these transfer functions, and from those
developed for Level 3 flying qualities, frequency bound can be plotted
A4 to define the range of each. Figure B.2 shows a magnitude versus
frequency plot of these bounds for Level 1 and Level 3 HQ. This plot is

required later on when the synthesis procedure is modified.

L R
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o. . /;‘- . /\ 44_/ /) //
TR/
¢ X N N
ORRE //
-20 X ﬁ{\: - 7[
N
dB << i 7\7
40 R
/% 2 \25
-eo. / \Z |
i
ool /1 §;
/AR
0% ol 10 100

|
FREQUENCY (RAD/SEC)

Fig. B.2 Frequency bounds (approximate) on Level 1 and Level 3
HQ for fighter A/C landing task.
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Table B.1 Closed-loop Transfer Functions Representing The
Boundaries For Level 1 HQ.

Point Transfer Function

2 27
s? + 3.54s + 27

B 27
s? + 12.5s5 + 27

c 1.44
s? + 0.82s + 1.44

b 1.44
s? +2.88s + 1.44

5 27
s? + 6.76s + 27

7 14.4
s? + 2.56s + 14.4

c 14.4
s? +9.12s + 14.4

i 1.44
s? +1.56s + 1.44

B.4 Modification of the QOFT Design Procedure

This section addresses the problem of insuring handling qualities
for a given subset of the total plant set, where this subset is assumed
as a small part of the plant set.
slightly altered to take advantage of the difference in stability and
tracking criteria for the plant set in question.
however, the whole concept of robust control for reconfigurable flight
control systems requires examination so the "task" of the controller is

well defined.

To do this, the QFT design process is
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What are the causes of unrealistic, high bandwidths in the QFT
design process? Large plant uncertainty and tight tracking/cross-
coupling rejection tolerances. Does that uncertainty in the plant lead
to large plant templates even at "high" frequencies? Does the strict
tolerances place too much of a burden on compensation for a plant with
failures? Normally, given a problem with strict tolerances and large
plant uncertainty one would expect "healthy" loop bandwidths. To get
around this one could 1limit the amount of uncertainty dealt with,
leaving some situations uncontrollable. Or, the system specifications
could be relaxed for the total plant set, ending up with a sluggish
and/or noisy system. The goal is to do a little of both, compromising

to insure stability and tracking performance.

Obviously, a pilot wants to fly a Level 1 A/C all the time, but
most pilots are practical and will accept HQ degradation for failures as
a fact of life. To take advantage of this in the design process relax
the idea of initial acceptable tracking responses from Level 1 to Level

5> or minimum control conditions, Level 3. This meets one of the goals:

FOR ROBUST CONTROL IN THE FACE OF SU'RFACE FAILURES IT IS DESIRED TO
SIMPLY KEEP THE PLANE IN THE AIR LONG ENOUGH FOR THE FDI SYSTEM TO
EFFECT AN OPTIMAL SOLUTION (or get the pilot out)!

For this Level 1 HQ is not required, Level 3 qualities are acceptable.
Relaxing tracking requirements as shown in Fig. B.3 can significantly
increase the area of acceptable tracking responses, likewise pushing the
tracking bounds lower on the NC, reducing loop BW. Now the reader is
saying at this point, "Sure you've lowered the loop BW (ignoring cross-
coupling effects), but the tracking response could be terrible for
healthy plants." True; however, the desired tracking response for those
plants in the subset of interest will be recovered later in the design
process, the loop compensation is insuring stability while the
prefiltering will give the required tracking response. In addition to
using the lowest acceptable HQ for falled A/C as initial tracking bounds
the cross-coupling rejection should be moved from "desired" to
"acceptable" levels to arrive at the lowest practical cross-coupling

bounds.
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- Fig. B.3 Acceptable frequency response areas for flight
stability and controllability, and Level 1
flying qualities.
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Fig. B.4 QFT system configuration

The approach taken here is to use QFT almost exactly as before, but
relaxing a few tolerances, and making others stricter. Figure B.4 shows
the system configuration used in the QFT design process. P is the plant
to be controlled, G is the loop compensator, and F is the prefilter.
The input and output dimensions are assumed the same, the plant being

observable and controllable.

The first step is to break the entire plant set ® into two subsets,
the plants which should fly Level 1, P’, and those that can fly a worse
HQ level, P". Two sets of plant templates are required, those for @,
and those for P’. Using the tracking specifications for Level 3 and the
required cross-coupling rejection, develop loop bounds on the NC with
the templates for ®. Once the bounds are on the NC a loop transfer
is shaped in the normal way. The nominal plant used to plot the bounds
and to shape the loop is a member of P’, preferably the plant which flys
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the most. Calculate G in the normal manner. Note that the loop has
been designed for stability: the compensator G has now resulted in a
range of stable plants that may, or may not, meet the tracking
requirements for Level 1 - no guarantees, all that is known is that they
are stable and, if the design process is continued, they will fly Level
3. Normally at this point in the design, the prefilter is derived from
the original tracking bounds. All this does is guarantee possible bad
responses for P’, stable, but not Level 1. Going back to the original
premise, only Level 1 responses are desired for the plants in P’ (not
caring much about P~ as long as it's stable and controllable). Thus the
prefilter is synthesized for just that, agreeing to accept whatever
responses for the other (non P’) plants arise.

One has to insure that the prefilter modifies the system such that
a chosen subset of the original plant set have closed-loop responses
within a specified range on a Bode plot. The modification results in
Level 1 HQ for the chosen set, but can't guarantee good HQ for the rest
of the plant set (but it is reasonable to assume some performance
degradation for A/C with failures). This method insures stability and
a level of controllability with failures (which is what is desired for
a damaged A/C). Since the prefilter is placed ahead of the closed loop,
the problem now is a simple cascade compensation, or how best to pick
the prefilter. The prefilter is chosen using just the data from P’
recognizing that only the loop transfers of P’ are of concern. So

working just with those plants:

a. Derive templates using only the plants in P’. These templates
have a smaller area than the templates for the entire plant set,

and thus contain less uncertainty.

b. "Run" the new templates along L,(jw), noting the maximum and
mininimum values (as would be done normally with the entire plant
template for the set ®@). Use the stricter Level 1 boundaries (Fig.

B.2) to calculate the prefilter limits.

c. Shape the prefilter the normal way.
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The prefilter(s) thus designed insure that the particular plants of
interest P’ have Level 1 HQ while at the same time the 1loop
compensator(s) G guarantee stability for the entire plant set. Note
that the(se) prefilter(s) have larger bandwidth(s) than ones designed
using QFT and the original, looser tracking bounds for Level 3. This
increase should not cause problems since all uncertainty, instability,
and cross-coupling effects are contained in the compensated loop
previously designed, besides they are lower in BW than prefilters
designed assuming Level 1 for all plants in ®. The actual time responses
for the non-P’ plants can not be predicted, but then again they are not
of concern as long as they are stable and controllable.

B.5 Remarks by Dr. I. M. Horowitz

I. The idea of using Level 3 performance specifications is certainly
sound and worth pursuing in any tough problem where physical limitations
such as when practical sampling frequency w?® and loop bandwidths are in
conflict. Apriori, one can (at the very onset) define several sets of
bounds on IT(jw)I (or even more). There are a variety of possibilities:

1. Determine only one set of bounds on L,, i.e., such that for any
set @, bounds B; [on IT(jw)I] are satisfied and for set @, bounds B,

(on [T(jw)]] are satisfied.

2. For all @ (i.e., ®,UP,) the bounds B, are satisfied giving one
set of bounds on L,. Likewise, for all ®, B, are satisfied, etc.

Possibility 1 appears to be more reasonable.
It is a good idea to see the templates before spending a great deal
of time on formulating B, and B,. The templates pretty well push you in

a certain direction in formulating the lesser desirable B;.

For difficult problems, one should economize as much as possible on

the bounds B(jw) on |T(jw)| as follows:
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(a) For any T(jw) [t t; (L # 3)] consider the actual typical time
response characteristics (see MIL specifications). For example, a
pitch-rate response usually allows for large overshoot with a
reasonable settling time, i.e., Fig. B.5(a) is okay but not Fig.
B.5(b). A second-order T;(s) results in the q;(t) response which
is not satisfactory for a q;(t) time response. A pole-zero pattern
for an acceptable T;(s) is shown in Fig. B.6. If the constraints
on the parameters of Fig. B.7 are specified, then synthesize a
pole-zero pattern which will yield this desired response and use it
to |T;(jw)| bounds. Thus, the |T(jw) | bounds are being tuned to
the natural system response which can result in a maximum economy

in bandwidth.®

(b) In loop shaping there is often a dominant bound, e.g., Bk(jz)

in Fig. B.8 (solid 1lines) dominates. By analyzing the plant
templates and the bounds on |T(jw)|, shown in Fig. B.9 (a), an
improvement in BW may be achieved, if it is possible, by widening
the bounds at w = 2 and narrowing them at w = 4 as shown in Figqg.
B.9 (b). What is the resulting effect on the time response range?
The time-frequency relation is via an integral. If Fig. B.9(b)
gives the dashed bounds in Fig. B.8 then an improvement has been
achieved. This approach is worth trying where an improvement in BW

is desired.

IT. The possibility of scheduling the high-frequency gain factor
through air data measurements (aerodynamic data for each f£flight
condition mach vs altitude, which is apparently quite reliable, should
be considered. Even if the air data measurements are gquite inaccurate,
say 1 * 0.25, then the uncertainty factor (which is the length of the

UHFB) is now only 1.25/0.75 (< 6 dB) instead of possibly 30 dB. However,

this scheduling is the same as for the failure cases (see Reference 3).
III. More advanced approaches should be considered such as:

1. Using a n.m.p. MIMO plant and allowing one row of t; to suffer.
If available, select an output variable which can be sacrificed in

order that the others are m.p.
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2. Doing a preliminary design with smaller BW, which only
stabilizes the system, i.e., the bounds on only Lm [L/(1l + L)] <3
or 4 dB. Then doing a second design with the resulting new
effective plant (which includes the compensation of the preliminary

design) for achieving the desired performance.

3. An oscillating adaptive system was used by Minneapolis-Honeywell
on the X-15 but they never developed an analytic design technique.
This was done by some PHD students at Weizmann Institute of

Science.'V

4. Nonlinear compensation (non-identification -- strickly passive
nonlinear compensation) for 1loop BW economization should be

investigated.

B.6 Summary

This appendix has presented a method by which compensation that
guarantees specific (Level 1) HQ for a subset of a larger plant set
containing both healthy and failed plants can be derived using QFT.
Since only a few plants must exhibit good HQ, the BW penalties for
forcing A/C with failed actuators to fly the same as healthy A/C are
diminished, leading to more realistic compensation (or a larger amount
of plant uncertainty being controllable given a specific BW and
actuation). Thus, healthy A/C can be included into the design as
before, wut now with the guarantee that they will fly Level 1, while at
the same time insuring robust behavior of the control systen. The
modifications to QFT are minimal: relax the initial acceptable tracking
and cross-coupling responses to the bare minimum for controllable
flight, use the loop compensation to guarantee stability, and develop
the prefilter to give Level 1 HQ for the specific plants chosen. This
method has yet (1985"%) to be tried out in earnest, but synthesis-
simulation work needs to be undertaken to verify the approach taken in

this design.
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